19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cancer exosomes trigger mesenchymal stem cell differentiation into pro-angiogenic and pro-invasive myofibroblasts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stromal fibroblasts become altered in response to solid cancers, to exhibit myofibroblastic characteristics, with disease promoting influence. Infiltrating mesenchymal stem cells (MSC) may contribute towards these changes, but the factors secreted by cancer cells that impact MSC differentiation are poorly understood.

          We investigated the role of nano-metre sized vesicles (exosomes), secreted by prostate cancer cells, on the differentiation of bone-marrow MSC (BM-MSC), and the subsequent functional consequences of such changes. Purified exosomes impaired classical adipogenic differentiation, skewing differentiation towards alpha-smooth muscle actin (αSMA) positive myofibroblastic cells. A single exosomes treatment generated myofibroblasts secreting high levels of VEGF-A, HGF and matrix regulating factors (MMP-1, −3 and −13). Differentiated MSC had pro-angiogenic functions and enhanced tumour proliferation and invasivity assessed in a 3D co-culture model. Differentiation was dependent on exosomal-TGFβ, but soluble TGFβ at matched dose could not generate the same phenotype. Exosomes present in the cancer cell secretome were the principal factors driving this phenotype.

          Prostate cancer exosomes dominantly dictate a programme of MSC differentiation generating myofibroblasts with functional properties consistent with disease promotion.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium.

          The present study demonstrates that fibroblasts associated with carcinomas stimulate tumor progression of initiated nontumorigenic epithelial cells both in an in vivo tissue recombination system and in an in vitro coculture system. Human prostatic carcinoma-associated fibroblasts grown with initiated human prostatic epithelial cells dramatically stimulated growth and altered histology of the epithelial population. This effect was not detected when normal prostatic fibroblasts were grown with the initiated epithelial cells under the same experimental conditions. In contrast, carcinoma-associated fibroblasts did not affect growth of normal human prostatic epithelial cells under identical conditions. From these data, we conclude that in this human prostate cancer model, carcinoma-associated fibroblasts stimulate progression of tumorigenesis. Thus, carcinoma-associated fibroblasts can direct tumor progression of an initiated prostate epithelial cell.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR.

            Activated EGF receptor (EGFR) plays an oncogenic role in several human malignancies. Although the intracellular effects of EGFR are well studied, its ability to induce and modulate tumor angiogenesis is less understood. We found previously that oncogenic EGFR can be shed from cancer cells as cargo of membrane microvesicles (MVs), which can interact with surfaces of other cells. Here we report that MVs produced by human cancer cells harboring activated EGFR (A431, A549, DLD-1) can be taken up by cultured endothelial cells, in which they elicit EGFR-dependent responses, including activation of MAPK and Akt pathways. These responses can be blocked by annexin V and its homodimer, Diannexin, both of which cloak phosphatidylserine residues on the surfaces of MVs. Interestingly, the intercellular EGFR transfer is also accompanied by the onset of VEGF expression in endothelial cells and by autocrine activation of its key signaling receptor (VEGF receptor-2). In A431 human tumor xenografts in mice, angiogenic endothelial cells stain positively for human EGFR and phospho-EGFR, while treatment with Diannexin leads to a reduction of tumor growth rate and microvascular density. Thus, we propose that oncogene-containing tumor cell-derived MVs could act as a unique form of angiogenesis-modulating stimuli and are capable of switching endothelial cells to act in an autocrine mode.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2.

              Exosomes are nanometer-sized vesicles, secreted by normal and neoplastic cells. The outcome following interaction between the cellular immune system and cancer-derived exosomes is not well understood. Interleukin-2 (IL-2) is a key factor supporting expansion and differentiation of CTL and natural killer (NK) cells but can also support regulatory T cells and their suppressive functions. Our study examined whether tumor-derived exosomes could modify lymphocyte IL-2 responses. Proliferation of healthy donor peripheral blood lymphocytes in response to IL-2 was inhibited by tumor exosomes. In unfractionated lymphocytes, this effect was seen in all cell subsets. Separating CD4(+) T cells, CD8(+) T cells, and NK cells revealed that CD8(+) T-cell proliferation was not inhibited in the absence of CD4(+) T cells and that NK cell proliferation was only slightly impaired. Other exosome effects included selective impairment of IL-2-mediated CD25 up-regulation, affecting all but the CD3(+)CD8(-) T-cell subset. IL-2-induced Foxp3 expression by CD4(+)CD25(+) cells was not inhibited by tumor exosomes, and the suppressive function of CD4(+)CD25(+) T cells was enhanced by exosomes. In contrast, exosomes directly inhibited NK cell killing function in a T-cell-independent manner. Analysis of tumor exosomes revealed membrane-associated transforming growth factor beta(1) (TGFbeta(1)), which contributed to the antiproliferative effects, shown by using neutralizing TGFbeta(1)-specific antibody. The data show an exosome-mediated mechanism of skewing IL-2 responsiveness in favor of regulatory T cells and away from cytotoxic cells. This coordinated "double hit" to cellular immunity strongly implicates the role of exosomes in tumor immune evasion.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                January 2015
                28 November 2014
                : 6
                : 2
                : 715-731
                Affiliations
                1 Institute of Cancer and Genetics, School of Medicine, Cardiff University, Velindre Cancer Centre, Whitchurch, Cardiff, United Kingdom, CF14 2TL
                2 Cardiff Institute for Tissue Engineering and Repair, Cardiff university
                Author notes
                Correspondence to: Aled Clayton, claytona@ 123456cardiff.ac.uk
                Article
                10.18632/oncotarget.2711
                4359250
                25596732
                47305866-4fe2-4993-b45e-44cef64feb95
                Copyright: © 2015 Chowdhury et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 November 2014
                : 11 November 2014
                Categories
                Research Paper

                Oncology & Radiotherapy
                exosomes,cancer stroma,mesenchymal stem cells,prostate cancer
                Oncology & Radiotherapy
                exosomes, cancer stroma, mesenchymal stem cells, prostate cancer

                Comments

                Comment on this article