6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Germline and Somatic Whole-Exome Sequencing Identifies New Candidate Genes Involved in Familial Predisposition to Serrated Polyposis Syndrome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Cancer is the second leading cause of death worldwide. Serrated polyposis syndrome (SPS) is characterized by the presence of serrated lesions in the colon and a higher colorectal cancer (CRC) risk. An important part of risk is due to the alteration of certain genes, which will be transmitted from one generation to another in the same family. Our main objective was to identify alterations of the human genome relevant to the hereditary predisposition to SPS, by focusing on families with several cases of this disease (familial SPS) and by using massive sequencing techniques to decode the genome. Our strategy allowed us to suggest the implication of 14 new genes in SPS predisposition. Identifying the inherited genetic factors involved in SPS can be useful to identify those families with medium-high CRC risk and, therefore, implement more targeted, intensive preventive measures for this group of patients.

          Abstract

          The serrated polyposis syndrome (SPS) is the most common and yet underdiagnosed colorectal polyposis syndrome. It is characterized by multiple and/or large colonic serrated polyps and a higher associated risk for colorectal cancer (CRC). The main objective of this study was to identify new candidate genes involved in the germline predisposition to SPS/CRC. Thirty-nine SPS patients from 16 families (≥2 patients per family) were recruited without alterations in well-known hereditary CRC genes, and germline and somatic whole-exome sequencing were performed. Germline rare variants with plausible pathogenicity, located in genes involved in cancer development, senescence and epigenetic regulation were selected. Somatic mutational profiling and signature analysis was pursued in one sample per family, when possible. After data filtering, ANXA10, ASXL1, CFTR, DOT1L, HIC1, INO80, KLF3, MCM3AP, MCM8, PDLIM2, POLD1, TP53BP1, WNK2 and WRN were highlighted as the more promising candidate genes for SPS germline predisposition with potentially pathogenic variants shared within families. Somatic analysis characterized mutational profiles in advanced serrated polyps/tumors, revealing a high proportion of hypermutated samples, with a prevalence of clock-like mutational signatures in most samples and the presence of DNA mismatch repair-defective signatures in some cases. In conclusion, we identified new candidate genes to be involved in familial SPS. Further functional studies and replication in additional cohorts are required to confirm the selected candidates.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

          This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gene Ontology: tool for the unification of biology

            Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Fast and accurate short read alignment with Burrows–Wheeler transform

              Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ∼10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: rd@sanger.ac.uk
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                23 February 2021
                February 2021
                : 13
                : 4
                : 929
                Affiliations
                [1 ]Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; soaresdeli@ 123456clinic.cat (Y.S.d.L.); arnau@ 123456clinic.cat (C.A.-C.); bonjoch@ 123456clinic.cat (L.B.); franches@ 123456mskcc.org (S.F.-E.); jenifer.munoz@ 123456ciberehd.org (J.M.); lmoreira@ 123456clinic.cat (L.M.); mocana@ 123456clinic.cat (T.O.); cristina.herrera@ 123456ciberehd.org (C.H.-P.); carballal@ 123456clinic.cat (S.C.); lomoreno@ 123456clinic.cat (L.M.); castells@ 123456clinic.cat (A.C.); fprunes@ 123456clinic.cat (F.B.)
                [2 ]Moores Cancer Center, Department of Cellular and Molecular Medicine, Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; mdiazgay@ 123456health.ucsd.edu
                [3 ]Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Pathology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Tumor Bank-Biobank, Hospital Clínic, 08036 Barcelona, Spain; MCUATREC@ 123456clinic.cat
                [4 ]Genetics Unit, Hospital Universitario de Móstoles, 28935 Madrid, Spain; arandiazbus@ 123456yahoo.es
                [5 ]Gastroenterology Department, Hospital Donostia-Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Basque Country University (UPV/EHU), 20014 San Sebastián, Spain; LUIS.BUJANDAFERNANDEZDEPIEROLA@ 123456osakidetza.eus
                [6 ]Gastroenterology Department, Complexo Hospitalario Universitario de Ourense, Instituto de Investigación Sanitaria Galicia Sur, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 32005 Ourense, Spain; Joaquin.Cubiella.Fernandez@ 123456sergas.es
                [7 ]Digestive Disease Section, Hospital Universitario de Móstoles, 28935 Móstoles, Spain; drodrigueza@ 123456salud.madrid.org
                Author notes
                [* ]Correspondence: sbel@ 123456clinic.cat ; Tel.: +34-93-227-5400 (ext. 4183)
                Author information
                https://orcid.org/0000-0003-0658-0467
                https://orcid.org/0000-0002-3351-0037
                https://orcid.org/0000-0002-4518-8591
                https://orcid.org/0000-0003-3063-0110
                https://orcid.org/0000-0002-9748-1212
                https://orcid.org/0000-0003-2065-2770
                https://orcid.org/0000-0001-8431-2033
                https://orcid.org/0000-0002-9994-4831
                https://orcid.org/0000-0001-6605-5061
                https://orcid.org/0000-0002-0206-0539
                https://orcid.org/0000-0003-1217-5097
                Article
                cancers-13-00929
                10.3390/cancers13040929
                7927050
                33672345
                4737463a-eec1-4acf-b759-149d4f1882cc
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 January 2021
                : 19 February 2021
                Categories
                Article

                serrated polyposis syndrome,genetic predisposition to disease,colorectal cancer,whole-exome sequencing,mutational signatures

                Comments

                Comment on this article