21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Orthodenticle is required for the development of olfactory projection neurons and local interneurons in Drosophila

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          The accurate wiring of nervous systems involves precise control over cellular processes like cell division, cell fate specification, and targeting of neurons. The nervous system of Drosophila melanogaster is an excellent model to understand these processes. Drosophila neurons are generated by stem cell like precursors called neuroblasts that are formed and specified in a highly stereotypical manner along the neuroectoderm. This stereotypy has been attributed, in part, to the expression and function of transcription factors that act as intrinsic cell fate determinants in the neuroblasts and their progeny during embryogenesis. Here we focus on the lateral neuroblast lineage, ALl1, of the antennal lobe and show that the transcription factor-encoding cephalic gap gene orthodenticle is required in this lineage during postembryonic brain development. We use immunolabelling to demonstrate that Otd is expressed in the neuroblast of this lineage during postembryonic larval stages. Subsequently, we use MARCM clonal mutational methods to show that the majority of the postembryonic neuronal progeny in the ALl1 lineage undergoes apoptosis in the absence of orthodenticle. Moreover, we demonstrate that the neurons that survive in the orthodenticle loss-of-function condition display severe targeting defects in both the proximal (dendritic) and distal (axonal) neurites. These findings indicate that the cephalic gap gene orthodenticle acts as an important intrinsic determinant in the ALl1 neuroblast lineage and, hence, could be a member of a putative combinatorial code involved in specifying the fate and identity of cells in this lineage.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Diversity and Wiring Variability of Olfactory Local Interneurons in the Drosophila Antennal Lobe

          Local interneurons play essential roles in information processing by neural circuits. Here we present a comprehensive genetic, anatomical, and electrophysiological analysis of local interneurons (LNs) in the Drosophila antennal lobe, the first olfactory processing center in the brain. We find that LNs are diverse in their neurotransmitter profiles, connectivity, and physiological properties. Analysis of >1500 individual LNs reveals major morphological classes characterized by coarsely stereotyped glomerular innervation patterns. Some of these morphological classes exhibit distinct physiological properties. However, the finer-scale connectivity of an individual LN varies considerably across brains and there is notable physiological variability within each morphological or genetic class. Finally, we show that LN innervation requires interaction with olfactory receptor neurons during development, and some individual variability also likely reflects LN-LN interactions. Our results reveal an unexpected degree of complexity and individual variation in an invertebrate neural circuit, a result that creates challenges for solving the Drosophila connectome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining.

            This protocol describes a basic method for dissection and immunofluorescence staining of the Drosophila brain at various developmental stages. The Drosophila brain has become increasingly useful for studies of neuronal wiring and morphogenesis in combination with techniques such as the 'mosaic analysis with a repressible cell marker' (MARCM) system, where single neurons can be followed in live and fixed tissues for high-resolution analysis of wild-type or genetically manipulated cells. Such high-resolution anatomical study of the brain is also important in characterizing the organization of neural circuits using genetic tools such as GAL4 enhancer trap lines, as Drosophila has been intensively used for studying the neural basis of behavior. Advantages of fluorescence immunostaining include compatibility with multicolor labeling and confocal or multiphoton imaging. This brain dissection and immunofluorescence staining protocol requires approximately 2 to 6 d to complete.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Target neuron prespecification in the olfactory map of Drosophila.

              In Drosophila and mice, olfactory receptor neurons (ORNs) expressing the same receptors have convergent axonal projections to specific glomerular targets in the antennal lobe/olfactory bulb, creating an odour map in this first olfactory structure of the central nervous system. Projection neurons of the Drosophila antennal lobe send dendrites into glomeruli and axons to higher brain centres, thereby transferring this odour map further into the brain. Here we use the MARCM method to perform a systematic clonal analysis of projection neurons, allowing us to correlate lineage and birth time of projection neurons with their glomerular choice. We demonstrate that projection neurons are prespecified by lineage and birth order to form synapses with specific incoming ORN axons, and therefore to carry specific olfactory information. This prespecification could be used to hardwire the fly's olfactory system, enabling stereotyped behavioural responses to odorants. Developmental studies lead us to hypothesize that recognition molecules ensure reciprocally specific connections of ORNs and projection neurons. These studies also imply a previously unanticipated role for precise dendritic targeting by postsynaptic neurons in determining connection specificity.
                Bookmark

                Author and article information

                Journal
                Biol Open
                Biol Open
                biolopen
                bio
                Biology Open
                The Company of Biologists (Bidder Building, 140 Cowley Road, Cambridge, CB4 0DL, UK )
                2046-6390
                15 August 2014
                4 July 2014
                : 3
                : 8
                : 711-717
                Affiliations
                [1 ]National Centre for Biological Sciences – Tata Institute of Fundamental Research, UAS-GKVK Campus , Bellary Road, Bangalore 560065, India
                [2 ]Biozentrum, University of Basel , Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
                [* ]Present address: FIRC Institute of Molecular Oncology, Via Adamello, 16-20139 Milan, Italy.
                Author notes
                []Author for correspondence ( vijay@ 123456ncbs.res.in )
                Article
                BIO20148524
                10.1242/bio.20148524
                4133724
                24996925
                474cf0c2-890b-4ab8-b517-5ffba6c454cb
                © 2014. Published by The Company of Biologists Ltd

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

                History
                : 11 April 2014
                : 15 May 2014
                Categories
                Research Article

                Life sciences
                otd,olfactory interneuron,neuroblast,drosophila
                Life sciences
                otd, olfactory interneuron, neuroblast, drosophila

                Comments

                Comment on this article