14
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before September 30, 2024

      About Blood Purification: 2.2 Impact Factor I 5.8 CiteScore I 0.782 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Evaluation of Oxidant Stress in Dialysis Patients

      research-article
      Blood Purification
      S. Karger AG

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate.

          Free radicals vary widely in their thermodynamic properties, ranging from very oxidizing to very reducing. These thermodynamic properties can be used to predict a pecking order, or hierarchy, for free radical reactions. Using one-electron reduction potentials, the predicted pecking order is in agreement with experimentally observed free radical electron (hydrogen atom) transfer reactions. These potentials are also in agreement with experimental data that suggest that vitamin E, the primary lipid soluble small molecule antioxidant, and vitamin C, the terminal water soluble small molecule antioxidant, cooperate to protect lipids and lipid structures against peroxidation. Although vitamin E is located in membranes and vitamin C is located in aqueous phases, vitamin C is able to recycle vitamin E; i.e., vitamin C repairs the tocopheroxyl (chromanoxyl) radical of vitamin E, thereby permitting vitamin E to function again as a free radical chain-breaking antioxidant. This review discusses: (i) the thermodynamics of free radical reactions that are of interest to the health sciences; (ii) the fundamental thermodynamic and kinetic properties that are associated with chain-breaking antioxidants; (iii) the unique interfacial nature of the apparent reaction of the tocopherol free radical (vitamin E radical) and vitamin C; and (iv) presents a hierarchy, or pecking order, for free radical electron (hydrogen atom) transfer reactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury

            Increasing appreciation of the causative role of oxidative injury in many disease states places great importance on the reliable assessment of lipid peroxidation. Malondialdehyde (MDA) is one of several low-molecular-weight end products formed via the decomposition of certain primary and secondary lipid peroxidation products. At low pH and elevated temperature, MDA readily participates in nucleophilic addition reaction with 2-thiobarbituric acid (TBA), generating a red, fluorescent 1:2 MDA:TBA adduct. These facts, along with the availability of facile and sensitive methods to quantify MDA (as the free aldehyde or its TBA derivative), have led to the routine use of MDA determination and, particularly, the "TBA test" to detect and quantify lipid peroxidation in a wide array of sample types. However, MDA itself participates in reactions with molecules other than TBA and is a catabolic substrate. Only certain lipid peroxidation products generate MDA (invariably with low yields), and MDA is neither the sole end product of fatty peroxide formation and decomposition nor a substance generated exclusively through lipid peroxidation. Many factors (e.g., stimulus for and conditions of peroxidation) modulate MDA formation from lipid. Additional factors (e.g., TBA-test reagents and constituents) have profound effects on test response to fatty peroxide-derived MDA. The TBA test is intrinsically nonspecific for MDA; nonlipid-related materials as well as fatty peroxide-derived decomposition products other than MDA are TBA positive. These and other considerations from the extensive literature on MDA. TBA reactivity, and oxidative lipid degradation support the conclusion that MDA determination and the TBA test can offer, at best, a narrow and somewhat empirical window on the complex process of lipid peroxidation. The MDA content and/or TBA reactivity of a system provides no information on the precise structures of the "MDA precursor(s)," their molecular origins, or the amount of each formed. Consequently, neither MDA determination nor TBA-test response can generally be regarded as a diagnostic index of the occurrence/extent of lipid peroxidation, fatty hydroperoxide formation, or oxidative injury to tissue lipid without independent chemical evidence of the analyte being measured and its source. In some cases, MDA/TBA reactivity is an indicator of lipid peroxidation; in other situations, no qualitative or quantitative relationship exists among sample MDA content, TBA reactivity, and fatty peroxide tone. Utilization of MDA analysis and/or the TBA test and interpretation of sample MDA content and TBA test response in studies of lipid peroxidation require caution, discretion, and (especially in biological systems) correlative data from other indices of fatty peroxide formation and decomposition.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The role of lipid peroxidation and antioxidants in oxidative modification of LDL

                Bookmark

                Author and article information

                Journal
                BPU
                Blood Purif
                10.1159/issn.0253-5068
                Blood Purification
                S. Karger AG
                978-3-8055-7080-0
                978-3-318-00581-3
                0253-5068
                1421-9735
                2000
                2000
                18 August 2000
                : 18
                : 4
                : 343-349
                Affiliations
                Health and Clinical Science, University of Massachusetts, Lowell, Mass., USA
                Article
                14460 Blood Purif 2000;18:343–349
                10.1159/000014460
                10965079
                47bd022b-f5a4-4d92-aad0-594ad1066c6a
                © 2000 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Figures: 8, References: 64, Pages: 7
                Categories
                Paper

                Cardiovascular Medicine,Nephrology
                Cardiovascular Medicine, Nephrology

                Comments

                Comment on this article