9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Eryptosis: An Erythrocyte's Suicidal Type of Cell Death

      review-article
      ,
      BioMed Research International
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Erythrocytes play an important role in oxygen and carbon dioxide transport. Although erythrocytes possess no nucleus or mitochondria, they fulfil several metabolic activities namely, the Embden-Meyerhof pathway, as well as the hexose monophosphate shunt. Metabolic processes within the erythrocyte contribute to the morphology/shape of the cell and important constituents are being kept in an active, reduced form. Erythrocytes undergo a form of suicidal cell death called eryptosis. Eryptosis results from a wide variety of contributors including hyperosmolarity, oxidative stress, and exposure to xenobiotics. Eryptosis occurs before the erythrocyte has had a chance to be naturally removed from the circulation after its 120-day lifespan and is characterised by the presence of membrane blebbing, cell shrinkage, and phosphatidylserine exposure that correspond to nucleated cell apoptotic characteristics. After eryptosis is triggered there is an increase in cytosolic calcium (Ca 2+) ion levels. This increase causes activation of Ca 2+-sensitive potassium (K +) channels which leads to a decrease in intracellular potassium chloride (KCl) and shrinkage of the erythrocyte. Ceramide, produced by sphingomyelinase from the cell membrane's sphingomyelin, contributes to the occurrence of eryptosis. Eryptosis ensures healthy erythrocyte quantity in circulation whereas excessive eryptosis may set an environment for the clinical presence of pathophysiological conditions including anaemia.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          The lung is a site of platelet biogenesis and a reservoir for hematopoietic progenitors

          Platelets are critical for hemostasis, thrombosis, and inflammatory responses 1,2 , yet the events leading to mature platelet production remain incompletely understood 3 . The bone marrow (BM) is proposed to be a major site of platelet production although indirect evidence points towards a potential pulmonary contribution to platelet biogenesis 4-7 . By directly imaging the lung microcirculation in mice 8 , we discovered that a large number of megakaryocytes (MKs) circulate through the lungs where they dynamically release platelets. MKs releasing platelets in the lung are of extrapulmonary origin, such as the BM, where we observed large MKs migrating out of the BM space. The lung contribution to platelet biogenesis is substantial with approximately 50% of total platelet production or 10 million platelets per hour. Furthermore, we identified populations of mature and immature MKs along with hematopoietic progenitors that reside in the extravascular spaces of the lung. Under conditions of thrombocytopenia and relative stem cell deficiency in the BM 9 , these progenitors can migrate out of the lung, repopulate the BM, completely reconstitute blood platelet counts, and contribute to multiple hematopoietic lineages. These results position the lung as a primary site of terminal platelet production and an organ with considerable hematopoietic potential.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Killing me softly - suicidal erythrocyte death.

            Similar to nucleated cells, erythrocytes may undergo suicidal death or eryptosis, which is characterized by cell shrinkage, cell membrane blebbing and cell membrane phospholipid scrambling. Eryptotic cells are removed and thus prevented from undergoing hemolysis. Eryptosis is stimulated by Ca(2+) following Ca(2+) entry through unspecific cation channels. Ca(2+) sensitivity is enhanced by ceramide, a product of acid sphingomyelinase. Eryptosis is triggered by hyperosmolarity, oxidative stress, energy depletion, hyperthermia and a wide variety of xenobiotics and endogenous substances. Eryptosis is inhibited by nitric oxide, catecholamines and a variety of further small molecules. Erythropoietin counteracts eryptosis in part by inhibiting the Ca(2+)-permeable cation channels but by the same token may foster formation of erythrocytes, which are particularly sensitive to eryptotic stimuli. Eryptosis is triggered in several clinical conditions such as iron deficiency, diabetes, renal insufficiency, myelodysplastic syndrome, phosphate depletion, sepsis, haemolytic uremic syndrome, mycoplasma infection, malaria, sickle-cell anemia, beta-thalassemia, glucose-6-phosphate dehydrogenase-(G6PD)-deficiency, hereditary spherocytosis, paroxysmal nocturnal hemoglobinuria, and Wilson's disease. Enhanced eryptosis is observed in mice with deficient annexin 7, cGMP-dependent protein kinase type I (cGKI), AMP-activated protein kinase AMPK, anion exchanger AE1, adenomatous polyposis coli APC and Klotho as well as in mouse models of sickle cell anemia and thalassemia. Eryptosis is decreased in mice with deficient phosphoinositide dependent kinase PDK1, platelet activating factor receptor, transient receptor potential channel TRPC6, janus kinase JAK3 or taurine transporter TAUT. If accelerated eryptosis is not compensated by enhanced erythropoiesis, clinically relevant anemia develops. Eryptotic erythrocytes may further bind to endothelial cells and thus impede microcirculation. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enhanced phagocytosis of ring-parasitized mutant erythrocytes: a common mechanism that may explain protection against falciparum malaria in sickle trait and beta-thalassemia trait.

              High frequency of erythrocyte (red blood cell [RBC]) genetic disorders such as sickle cell trait, thalassemia trait, homozygous hemoglobin C (Hb-C), and glucose-6-phosphate dehydrogenase (G6PD) deficiency in regions with high incidence of Plasmodium falciparum malaria and case-control studies support the protective role of those conditions. Protection has been attributed to defective parasite growth or to enhanced removal of the parasitized RBCs. We suggested enhanced phagocytosis of rings, the early intraerythrocytic form of the parasite, as an alternative explanation for protection in G6PD deficiency. We show here that P falciparum developed similarly in normal RBCs and in sickle trait, beta- and alpha-thalassemia trait, and HbH RBCs. We also show that membrane-bound hemichromes, autologous immunoglobulin G (IgG) and complement C3c fragments, aggregated band 3, and phagocytosis by human monocytes were remarkably higher in rings developing in all mutant RBCs considered except alpha-thalassemia trait. Phagocytosis of ring-parasitized mutant RBCs was predominantly complement mediated and very similar to phagocytosis of senescent or damaged normal RBCs. Trophozoite-parasitized normal and mutant RBCs were phagocytosed similarly in all conditions examined. Enhanced phagocytosis of ring-parasitized mutant RBCs may represent the common mechanism for malaria protection in nonimmune individuals affected by widespread RBC mutations, while individuals with alpha-thalassemia trait are likely protected by a different mechanism.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2018
                3 January 2018
                : 2018
                : 9405617
                Affiliations
                Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
                Author notes

                Academic Editor: Christophe Duranton

                Author information
                http://orcid.org/0000-0002-6931-7554
                Article
                10.1155/2018/9405617
                5817309
                29516014
                48cb6aba-c379-42db-828e-f75cd03dd8f1
                Copyright © 2018 Lisa Repsold and Anna Margaretha Joubert.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 October 2017
                : 14 December 2017
                Funding
                Funded by: National Research Foundation
                Funded by: Struwig-Germeshuysen Research Trust
                Funded by: South African Medical Research Council
                Funded by: Cancer Association of South Africa
                Funded by: University of Pretoria
                Categories
                Review Article

                Comments

                Comment on this article