40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Primary cilia modulate balance of canonical and non-canonical Wnt signaling responses in the injured kidney

      research-article
      , , ,
      Fibrogenesis & Tissue Repair
      BioMed Central
      Cilia, Fibrosis, Epithelial

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          While kidney injury is associated with re-expression of numerous Wnt ligands and receptors, molecular mechanisms which underlie regulation of distinct Wnt signaling pathways and ensuing biological consequences remain incompletely understood. Primary cilia are increasingly being recognized as cellular ‘antennae’ which sense and transduce signals from the microenvironment, particularly through Wnt signaling. Here, we explored the role of cilia as modulators of canonical and non-canonical Wnt signaling activities involving tubular epithelial cells in the injured kidney.

          Results

          We demonstrate that in the mouse model of unilateral ureter obstruction, progression of kidney injury correlates with increased expression of numerous Wnt ligands, and that increased expression of Wnt ligands corresponded with over-activation of canonical Wnt signaling. In contrast, non-canonical Wnt signaling dropped significantly during the course of kidney injury despite gradually increased expression of typical non-canonical and intermediate Wnt signaling ligands. We further demonstrate that in cultured tubular epithelial cells, cilia modulate balance between canonical and non-canonical signaling responses upon exposure to Wnt ligands.

          Conclusions

          We provide evidence that in the context of renal injury, primary cilia act as molecular switches between canonical and non-canonical Wnt signaling activity, possibly determining between regenerative and pro-fibrotic effects of Wnt re-expression in the injured kidney.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13069-015-0024-y) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Wnt signalling and its impact on development and cancer.

          The Wnt signalling pathway is an ancient system that has been highly conserved during evolution. It has a crucial role in the embryonic development of all animal species, in the regeneration of tissues in adult organisms and in many other processes. Mutations or deregulated expression of components of the Wnt pathway can induce disease, most importantly cancer. The first gene to be identified that encodes a Wnt signalling component, Int1 (integration 1), was molecularly characterized from mouse tumour cells 25 years ago. In parallel, the homologous gene Wingless in Drosophila melanogaster, which produces developmental defects in embryos, was characterized. Since then, further components of the Wnt pathway have been identified and their epistatic relationships have been defined. This article is a Timeline of crucial discoveries about the components and functions of this essential pathway.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Origin and function of myofibroblasts in kidney fibrosis.

            Myofibroblasts are associated with organ fibrosis, but their precise origin and functional role remain unknown. We used multiple genetically engineered mice to track, fate map and ablate cells to determine the source and function of myofibroblasts in kidney fibrosis. Through this comprehensive analysis, we identified that the total pool of myofibroblasts is split, with 50% arising from local resident fibroblasts through proliferation. The nonproliferating myofibroblasts derive through differentiation from bone marrow (35%), the endothelial-to-mesenchymal transition program (10%) and the epithelial-to-mesenchymal transition program (5%). Specific deletion of Tgfbr2 in α-smooth muscle actin (αSMA)(+) cells revealed the importance of this pathway in the recruitment of myofibroblasts through differentiation. Using genetic mouse models and a fate-mapping strategy, we determined that vascular pericytes probably do not contribute to the emergence of myofibroblasts or fibrosis. Our data suggest that targeting diverse pathways is required to substantially inhibit the composite accumulation of myofibroblasts in kidney fibrosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acute kidney injury increases risk of ESRD among elderly.

              Risk for ESRD among elderly patients with acute kidney injury (AKI) has not been studied in a large, representative sample. This study aimed to determine incidence rates and hazard ratios for developing ESRD in elderly individuals, with and without chronic kidney disease (CKD), who had AKI. In the 2000 5% random sample of Medicare beneficiaries, clinical conditions were identified using Medicare claims; ESRD treatment information was obtained from ESRD registration during 2 yr of follow-up. Our cohort of 233,803 patients were hospitalized in 2000, were aged > or = 67 yr on discharge, did not have previous ESRD or AKI, and were Medicare-entitled for > or = 2 yr before discharge. In this cohort, 3.1% survived to discharge with a diagnosis of AKI, and 5.3 per 1000 developed ESRD. Among patients who received treatment for ESRD, 25.2% had a previous history of AKI. After adjustment for age, gender, race, diabetes, and hypertension, the hazard ratio for developing ESRD was 41.2 (95% confidence interval [CI] 34.6 to 49.1) for patients with AKI and CKD relative to those without kidney disease, 13.0 (95% CI 10.6 to 16.0) for patients with AKI and without previous CKD, and 8.4 (95% CI 7.4 to 9.6) for patients with CKD and without AKI. In summary, elderly individuals with AKI, particularly those with previously diagnosed CKD, are at significantly increased risk for ESRD, suggesting that episodes of AKI may accelerate progression of renal disease.
                Bookmark

                Author and article information

                Contributors
                shoji.saito@med.uni-goettingen.de
                bjoern.tampe@med.uni-goettingen.de
                gmueller@med.uni-goettingen.de
                mzeisberg@med.uni-goettingen.de
                Journal
                Fibrogenesis Tissue Repair
                Fibrogenesis Tissue Repair
                Fibrogenesis & Tissue Repair
                BioMed Central (London )
                1755-1536
                16 April 2015
                16 April 2015
                2015
                : 8
                : 6
                Affiliations
                Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Robert-Koch Str. 40, 37075 Göttingen, Germany
                Article
                24
                10.1186/s13069-015-0024-y
                4404279
                25901180
                48db8739-9dbf-4994-a08b-676cbe2b5f23
                © Saito et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 21 January 2015
                : 20 March 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Molecular biology
                cilia,fibrosis,epithelial
                Molecular biology
                cilia, fibrosis, epithelial

                Comments

                Comment on this article