27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mutual modulation between norepinephrine and nitric oxide in haemocytes during the mollusc immune response

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nitric oxide (NO) is one of the most important immune molecules in innate immunity of invertebrates, and it can be regulated by norepinephrine in ascidian haemocytes. In the present study, the mutual modulation and underlying mechanism between norepinephrine and NO were explored in haemocytes of the scallop Chlamys farreri. After lipopolysaccharide stimulation, NO production increased to a significant level at 24 h, and norepinephrine concentration rose to remarkable levels at 3 h and 12~48 h. A significant decrease of NO production was observed in the haemocytes concomitantly stimulated with lipopolysaccharide and α-adrenoceptor agonist, while a dramatic increase of NO production was observed in the haemocytes incubated with lipopolysaccharide and β-adrenoceptor agonist. Meanwhile, the concentration of cyclic adenosine monophosphate (cAMP) decreased significantly in the haemocytes treated by lipopolysaccharide and α/β-adrenoceptor agonist, while the content of Ca 2+ was elevated in those triggered by lipopolysaccharide and β-adrenoceptor agonist. When the haemocytes was incubated with NO donor, norepinephrine concentration was significantly enhanced during 1~24 h. Collectively, these results suggested that norepinephrine exerted varied effects on NO production at different immune stages via a novel α/β-adrenoceptor-cAMP/Ca 2+ regulatory pattern, and NO might have a feedback effect on the synthesis of norepinephrine in the scallop haemocytes.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          The neuroendocrine system of invertebrates: a developmental and evolutionary perspective.

          Neuroendocrine control mechanisms are observed in all animals that possess a nervous system. Recent analyses of neuroendocrine functions in invertebrate model systems reveal a great degree of similarity between phyla as far apart as nematodes, arthropods, and chordates. Developmental studies that emphasize the comparison between different animal groups will help to shed light on questions regarding the evolutionary origin and possible homologies between neuroendocrine systems. This review intends to provide a brief overview of invertebrate neuroendocrine systems and to discuss aspects of their development that appear to be conserved between insects and vertebrates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nitric oxide and cell viability in inflammatory cells: a role for NO in macrophage function and fate.

            Macrophages participate actively in the inflammatory response by releasing cytokines, chemokines and factors that recruit additional cells to sites of infection or tissue injury or alteration. In addition to this, activated macrophages rapidly activate the expression of genes responsible for the high-output synthesis of reactive oxygen and nitrogen species (NO, O2-, H2O2 and peroxynitrite, among others) and bioactive lipids derived from arachidonic acid. All of these agents contribute to the regulation of the inflammatory response. Most of these molecules, when synthesized at these high concentrations, exert pro-apoptotic effects in many cell types. Macrophages themselves are a notable and important exception, being resistant to apoptotic death upon activation. This resistance is necessary to enable these cells to perform their functional role during the early phases of an inflammatory response. However, after cumulative damage, or when the synthesis of inflammatory mediators decreases, macrophages undergo the characteristic mitochondrial-dependent cell death program, contributing in this way to the resolution of the inflammatory reaction. In the case of infectious diseases, this also helps to prevent the development of parasitic strategies by phagocytosed pathogens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nitric oxide: an antiparasitic molecule of invertebrates.

              Ana Rivero (2006)
              Since Furchgott, Ignarro and Murad won the Nobel prize in 1998 for their work on the role of nitric oxide (NO) as a signaling molecule, many reports have shown the seemingly limitless range of body functions controlled by this compound. In vertebrates, the role of NO as a defense against infection caused by viruses, bacteria, and protozoan and metazoan parasites has been known for several years. New evidence, however, shows that NO is also important in defending invertebrates against parasites. This discovery is a breakthrough in the understanding of how the invertebrate immune system works, and it has implications for the emerging field of invertebrate ecological immunology.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                07 November 2014
                2014
                : 4
                : 6963
                Affiliations
                [1 ]The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
                [2 ]University of Chinese Academy of Sciences , Beijing 100049, China
                Author notes
                Article
                srep06963
                10.1038/srep06963
                4223682
                25376551
                490f53c2-7e0c-47a3-827b-77a33e0f4836
                Copyright © 2014, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

                History
                : 05 August 2014
                : 22 October 2014
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article