6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of corticosterone on mild auditory fear conditioning and extinction; role of sex and training paradigm

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Multiple lines of evidence suggest that glucocorticoid hormones enhance memory consolidation of fearful events. However, most of these studies involve male individuals. Since anxiety, fear, and fear-associated disorders present differently in male and female subjects we investigated in mice whether male and female mice perform differently in a mild, auditory fear conditioning task and tested the modulatory role of glucocorticoid hormones. Using an auditory fear conditioning paradigm with different footshock intensities (0.1, 0.2, and 0.4 mA) and frequencies (1× or 3×), we find that intraperitoneal injections with corticosterone (2 mg/kg) immediately after training, altered freezing behavior when repeated footshocks were applied, and that the direction of the effects were opposite in male and female mice. Effects were independent of footshock intensity. In male mice, corticosterone consistently increased freezing behavior in response to the tone, whereas in female mice, corticosterone reduced freezing behavior 24 h after training. These effects were not related to the phase of the oestrous cycle. In addition, corticosterone enhanced extinction learning for all tones, in both male and female mice. These results emphasize that glucocorticoid hormones influence memory consolidation and retrieval, and underscore sex-specific effects of glucocorticoid hormones in modulating conditioned fear responses.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Stress and the brain: from adaptation to disease.

          In response to stress, the brain activates several neuropeptide-secreting systems. This eventually leads to the release of adrenal corticosteroid hormones, which subsequently feed back on the brain and bind to two types of nuclear receptor that act as transcriptional regulators. By targeting many genes, corticosteroids function in a binary fashion, and serve as a master switch in the control of neuronal and network responses that underlie behavioural adaptation. In genetically predisposed individuals, an imbalance in this binary control mechanism can introduce a bias towards stress-related brain disease after adverse experiences. New candidate susceptibility genes that serve as markers for the prediction of vulnerable phenotypes are now being identified.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sex bias in neuroscience and biomedical research.

            Female mammals have long been neglected in biomedical research. The NIH mandated enrollment of women in human clinical trials in 1993, but no similar initiatives exist to foster research on female animals. We reviewed sex bias in research on mammals in 10 biological fields for 2009 and their historical precedents. Male bias was evident in 8 disciplines and most prominent in neuroscience, with single-sex studies of male animals outnumbering those of females 5.5 to 1. In the past half-century, male bias in non-human studies has increased while declining in human studies. Studies of both sexes frequently fail to analyze results by sex. Underrepresentation of females in animal models of disease is also commonplace, and our understanding of female biology is compromised by these deficiencies. The majority of articles in several journals are conducted on rats and mice to the exclusion of other useful animal models. The belief that non-human female mammals are intrinsically more variable than males and too troublesome for routine inclusion in research protocols is without foundation. We recommend that when only one sex is studied, this should be indicated in article titles, and that funding agencies favor proposals that investigate both sexes and analyze data by sex. Copyright © 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The neuro-symphony of stress.

              The impact of stress on brain function is increasingly recognized. Various substances are released in response to stress and can influence distinct neuronal circuits, but the functional advantages of having such a diversity of stress mediators remain unclear. Individual neurotransmitter, neuropeptide and steroid stress mediators have specific spatial and temporal niches, but these niches also overlap. In addition, the effects of individual mediators on neuronal function and plasticity are integrated, and emerging evidence suggests that there is crosstalk between them. Together, this results in the stress instruments producing an orchestrated 'symphony' that enables fine-tuned responses to diverse challenges.
                Bookmark

                Author and article information

                Journal
                Learn Mem
                Learn. Mem
                learnmem
                Learning & Memory
                Cold Spring Harbor Laboratory Press
                1072-0502
                1549-5485
                October 2018
                : 25
                : 10
                : 544-549
                Affiliations
                Brain Plasticity group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
                Author notes
                Corresponding author: sylvie.lesuis@ 123456gmail.com
                Article
                LM047811Les
                10.1101/lm.047811.118
                6149954
                30224557
                4a9f4f75-d1a1-4f1e-80e7-7d521160f53b
                © 2018 Lesuis et al.; Published by Cold Spring Harbor Laboratory Press

                This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first 12 months after the full-issue publication date (see http://learnmem.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 17 May 2018
                : 13 July 2018
                Page count
                Pages: 6
                Funding
                Funded by: Alzheimer Nederland
                Award ID: 12354
                Categories
                Research

                Comments

                Comment on this article