26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The unrealized potential of herbaria for global change biology

      1 , 2 , 1 , 2
      Ecological Monographs
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          A framework for community interactions under climate change.

          Predicting the impacts of climate change on species is one of the biggest challenges that ecologists face. Predictions routinely focus on the direct effects of climate change on individual species, yet interactions between species can strongly influence how climate change affects organisms at every scale by altering their individual fitness, geographic ranges and the structure and dynamics of their community. Failure to incorporate these interactions limits the ability to predict responses of species to climate change. We propose a framework based on ideas from global-change biology, community ecology, and invasion biology that uses community modules to assess how species interactions shape responses to climate change. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How does climate warming affect plant-pollinator interactions?

            Climate warming affects the phenology, local abundance and large-scale distribution of plants and pollinators. Despite this, there is still limited knowledge of how elevated temperatures affect plant-pollinator mutualisms and how changed availability of mutualistic partners influences the persistence of interacting species. Here we review the evidence of climate warming effects on plants and pollinators and discuss how their interactions may be affected by increased temperatures. The onset of flowering in plants and first appearance dates of pollinators in several cases appear to advance linearly in response to recent temperature increases. Phenological responses to climate warming may therefore occur at parallel magnitudes in plants and pollinators, although considerable variation in responses across species should be expected. Despite the overall similarities in responses, a few studies have shown that climate warming may generate temporal mismatches among the mutualistic partners. Mismatches in pollination interactions are still rarely explored and their demographic consequences are largely unknown. Studies on multi-species plant-pollinator assemblages indicate that the overall structure of pollination networks probably are robust against perturbations caused by climate warming. We suggest potential ways of studying warming-caused mismatches and their consequences for plant-pollinator interactions, and highlight the strengths and limitations of such approaches.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New developments in museum-based informatics and applications in biodiversity analysis.

              Information from natural history collections (NHCs) about the diversity, taxonomy and historical distributions of species worldwide is becoming increasingly available over the Internet. In light of this relatively new and rapidly increasing resource, we critically review its utility and limitations for addressing a diverse array of applications. When integrated with spatial environmental data, NHC data can be used to study a broad range of topics, from aspects of ecological and evolutionary theory, to applications in conservation, agriculture and human health. There are challenges inherent to using NHC data, such as taxonomic inaccuracies and biases in the spatial coverage of data, which require consideration. Promising research frontiers include the integration of NHC data with information from comparative genomics and phylogenetics, and stronger connections between the environmental analysis of NHC data and experimental and field-based tests of hypotheses.
                Bookmark

                Author and article information

                Journal
                Ecological Monographs
                Ecol Monogr
                Wiley
                00129615
                June 04 2018
                Affiliations
                [1 ]Department of Organismic and Evolutionary Biology; Harvard University Herbaria; 22 Divinity Avenue Cambridge Massachusetts 02138 USA
                [2 ]Department of Biology; McGill University; 1205 Dr. Penfield Avenue Montreal Quebec H3A 1B1 Canada
                Article
                10.1002/ecm.1307
                4ab8739a-15a6-4787-9484-3eed385e5245
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article