6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      AutoFoci, an automated high-throughput foci detection approach for analyzing low-dose DNA double-strand break repair

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Double-strand breaks (DSBs) are the most lethal DNA damages induced by ionising radiation (IR) and their efficient repair is crucial to limit genomic instability. The cellular DSB response after low IR doses is of particular interest but its examination requires the analysis of high cell numbers. Here, we present an automated DSB quantification method based on the analysis of γH2AX and 53BP1 foci as markers for DSBs. We establish a combination of object properties, combined in the object evaluation parameter (OEP), which correlates with manual object classification. Strikingly, OEP histograms show a bi-modal distribution with two maxima and a minimum in between, which correlates with the manually determined transition between background signals and foci. We used algorithms to detect the minimum, thus separating foci from background signals and automatically assessing DSB levels. To demonstrate the validity of this method, we analyzed over 600.000 cells to verify results of previous studies showing that DSBs induced by low doses are less efficiently repaired compared with DSBs induced by higher doses. Thus, the automated foci counting method, called AutoFoci, provides a valuable tool for high-throughput image analysis of thousands of cells which will prove useful for many biological screening approaches.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses.

          DNA double-strand breaks (DSBs) are generally accepted to be the most biologically significant lesion by which ionizing radiation causes cancer and hereditary disease. However, no information on the induction and processing of DSBs after physiologically relevant radiation doses is available. Many of the methods used to measure DSB repair inadvertently introduce this form of damage as part of the methodology, and hence are limited in their sensitivity. Here we present evidence that foci of gamma-H2AX (a phosphorylated histone), detected by immunofluorescence, are quantitatively the same as DSBs and are capable of quantifying the repair of individual DSBs. This finding allows the investigation of DSB repair after radiation doses as low as 1 mGy, an improvement by several orders of magnitude over current methods. Surprisingly, DSBs induced in cultures of nondividing primary human fibroblasts by very low radiation doses (approximately 1 mGy) remain unrepaired for many days, in strong contrast to efficient DSB repair that is observed at higher doses. However, the level of DSBs in irradiated cultures decreases to that of unirradiated cell cultures if the cells are allowed to proliferate after irradiation, and we present evidence that this effect may be caused by an elimination of the cells carrying unrepaired DSBs. The results presented are in contrast to current models of risk assessment that assume that cellular responses are equally efficient at low and high doses, and provide the opportunity to employ gamma-H2AX foci formation as a direct biomarker for human exposure to low quantities of ionizing radiation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exposure to low-dose ionizing radiation from medical imaging procedures.

            The growing use of imaging procedures in the United States has raised concerns about exposure to low-dose ionizing radiation in the general population. We identified 952,420 nonelderly adults (between 18 and 64 years of age) in five health care markets across the United States between January 1, 2005, and December 31, 2007. Utilization data were used to estimate cumulative effective doses of radiation from imaging procedures and to calculate population-based rates of exposure, with annual effective doses defined as low ( 3 to 20 mSv), high (> 20 to 50 mSv), or very high (> 50 mSv). During the study period, 655,613 enrollees (68.8%) underwent at least one imaging procedure associated with radiation exposure. The mean (+/-SD) cumulative effective dose from imaging procedures was 2.4+/-6.0 mSv per enrollee per year; however, a wide distribution was noted, with a median effective dose of 0.1 mSv per enrollee per year (interquartile range, 0.0 to 1.7). Overall, moderate effective doses of radiation were incurred in 193.8 enrollees per 1000 per year, whereas high and very high doses were incurred in 18.6 and 1.9 enrollees per 1000 per year, respectively. In general, cumulative effective doses of radiation from imaging procedures increased with advancing age and were higher in women than in men. Computed tomographic and nuclear imaging accounted for 75.4% of the cumulative effective dose, with 81.8% of the total administered in outpatient settings. Imaging procedures are an important source of exposure to ionizing radiation in the United States and can result in high cumulative effective doses of radiation. 2009 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DNA double strand break repair via non-homologous end-joining.

              DNA double-stranded breaks (DSB) are among the most dangerous forms of DNA damage. Unrepaired DSBs results in cells undergoing apoptosis or senescence whereas mis-processing of DSBs can lead to genomic instability and carcinogenesis. One important pathway in eukaryotic cells responsible for the repair of DSBs is non-homologous end-joining (NHEJ). In this review we will discuss the interesting new insights into the mechanism of the NHEJ pathway and the proteins which mediate this repair process. Furthermore, the general role of NHEJ in promoting genomic stability will be discussed.
                Bookmark

                Author and article information

                Contributors
                nicor@fkp.tu-darmstadt.de
                lobrich@bio.tu-darmstadt.de
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                23 November 2018
                23 November 2018
                2018
                : 8
                : 17282
                Affiliations
                [1 ]ISNI 0000 0001 0940 1669, GRID grid.6546.1, Theory of Complex Systems, , Darmstadt University of Technology, ; Hochschulstr. 6, 64289 Darmstadt, Germany
                [2 ]ISNI 0000 0001 0940 1669, GRID grid.6546.1, Radiation Biology and DNA Repair, , Darmstadt University of Technology, ; Schnittspahnstr. 13, 64287 Darmstadt, Germany
                [3 ]Image Consulting, 68804 Altlußheim, Germany
                Article
                35660
                10.1038/s41598-018-35660-5
                6251879
                30470760
                4ad84440-6772-4bdc-a095-52a206ec4e69
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 10 August 2018
                : 7 November 2018
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001659, Deutsche Forschungsgemeinschaft (German Research Foundation);
                Award ID: GRK1657
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article