Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of folate deficiency on promoter methylation and gene expression of Esr1, Cav1, and Elavl1, and its influence on spermatogenesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study aims to investigate the effect of folate deficiency on the male reproductive function and the underlying mechanism. A total of 269 screened participants from 421 recruitments were enrolled in this study. An animal model of folate deficiency was constructed. Folate concentration was measured in the ejaculate, and its association with semen parameters was then determined. The expression and promoter methylation status of ESR1, CAV1, and ELAVL1 were also evaluated. Results showed that seminal plasma folate level was significantly lower among subjects with azoospermia than those with normozoospermia. Low folate level was significantly correlated with low sperm concentration in men with normozoospermia. Folate deficiency significantly reduced the expression of ESR1, CAV1, and ELAVL1, which are critical to spermatogenesis. However, low folate levels did not increase the methylation levels of the promoter regions of ESR1, CAV1, and ELAVL1 in human sperm DNA. Thus, folate deficiency impairs spermatogenesis may partly due to inhibiting the expression of these genes. Thus future research should determine the significance of sufficient folate status in male fertilization and subsequent pregnancy outcomes.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Targeted disruption of the estrogen receptor gene in male mice causes alteration of spermatogenesis and infertility.

          The reproductive system of male mice homozygous for a mutation in the estrogen receptor (ER) gene (ER knock-out; ERKO) appears normal at the anatomical level. However, these males are infertile, indicating an essential role for ER-mediated processes in the regulation of male reproduction. Adult ERKO male mice have significantly fewer epididymal sperm than heterozygous or wild-type males. Although spermatogenesis is occurring in some seminiferous tubules of 3- to 5-month-old ERKO males, other tubules either have a dilated lumen and a disorganized seminiferous epithelium with few spermatogenic cells or lack a lumen and contain mainly Sertoli cells. There are no obvious differences in seminiferous tubules at 10 days of age between wild-type and ERKO mice, but the lumen in ERKO males is dilated in all seminiferous tubules by 20 days. However, spermatogenesis progresses and similar numbers of sperm are present in the cauda epididymis of ERKO and wild-type males until 10 weeks of age. Disruption of spermatogenesis and degeneration of the seminiferous tubules become apparent after 10 weeks in the caudal pole of the testis and progresses in a wave to the cranial pole by 6 months. However, the seminal vesicles, coagulating glands, prostate, and epididymis do not appear to be altered morphologically in ERKO mice. Serum testosterone levels are somewhat elevated, but LH and FSH levels are not significantly different from those in wild-type males. Sperm from 8- to 16-week-old mice have reduced motility and are ineffective at fertilizing eggs in vitro. In addition, ERKO males housed overnight with hormone-primed wild-type females produce significantly fewer copulatory plugs than do heterozygous or wild-type males. These results suggest that estrogen action is required for fertility in male mice and that the mutation of the ER in ERKO males leads to reduced mating frequency, low sperm numbers, and defective sperm function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oestrogens and spermatogenesis.

            The role of oestrogens in male reproductive tract physiology has for a long time been a subject of debate. The testis produces significant amounts of oestrogenic hormones, via aromatase, and oestrogen receptors (ERs)alpha (ESR1) and ERbeta (ESR2) are selectively expressed in cells of the testis as well as the epididymal epithelium, depending upon species. This review summarizes the current knowledge concerning the presence and activity of aromatase and ERs in testis and sperm and the potential roles that oestrogens may have in mammalian spermatogenesis. Data show that physiology of the male gonad is in part under the control of a balance of androgens and oestrogens, with aromatase serving as a modulator.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              17beta-estradiol induces the translocation of the estrogen receptors ESR1 and ESR2 to the cell membrane, MAPK3/1 phosphorylation and proliferation of cultured immature rat Sertoli cells.

              The aim of the present study was to determine the mechanisms involved in estrogen actions in cultured rat Sertoli cells. RT-PCR detected transcripts for the estrogen receptors ESR1 and ESR2 in cultured immature Sertoli cells and in the testis of 15-, 28-, and 120-day-old rats. The expression of ESR1 and ESR2 was confirmed in Sertoli cells by immunofluorescence and Western blot. Immunohistochemistry with cryosections of testes from immature and adult rats revealed that ESR1 is present in Sertoli, Leydig, and some peritubular myoid cells, and ESR2 is present in multiple cell types, including germ cells. Treatment of Sertoli cells with 17beta-estradiol (E(2)) induced a translocation of ESR1 and ESR2 to the plasma membrane and a concomitant phosphorylation of MAPK3/1. Both effects reached a maximum after 10 min and were blocked by PP2, an inhibitor of the SRC family of protein tyrosine kinases, and by the antiestrogen ICI 182,780 (ICI). MAPK3/1 phosphorylation was also decreased in the presence of AG 1478, an inhibitor of the epidermal growth factor receptor (EGFR) kinase, and in the presence of MAP2K1/2 inhibitor UO126. Treatment with E(2) for 24 h increased the incorporation of [methyl-(3)H]thymidine, which was blocked by ICI. These results indicate that E(2) activates an SRC-mediated translocation of estrogen receptors to the plasma membrane, which results in the activation of EGFR and the mitogen-activated protein kinase signaling pathway. In addition, activation of ESR1 and/or ESR2 by E(2) is involved in proliferation of immature Sertoli cells. The estrogen actions in Sertoli cells might be a key step mediating cellular events important for spermatogenesis and fertility.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                11 April 2017
                25 February 2017
                : 8
                : 15
                : 24130-24141
                Affiliations
                1 Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
                2 Center of Human Reproduction, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
                3 Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
                Author notes
                Correspondence to: Hui-Ping Zhang, familyplanning2013@ 123456163.com
                [*]

                Co-first authors

                Article
                15731
                10.18632/oncotarget.15731
                5421833
                28445960
                4ae39eb1-bbc8-42f6-aa17-e21b19e6b3dd
                Copyright: © 2017 Yuan et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 December 2016
                : 8 February 2017
                Categories
                Research Paper: Pathology

                Oncology & Radiotherapy
                folate deficiency,spermatogenesis,methylation,male infertility,gene expression,pathology section

                Comments

                Comment on this article