34
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Complete Genome Sequence of Borrelia afzelii K78 and Comparative Genome Analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The main Borrelia species causing Lyme borreliosis in Europe and Asia are Borrelia afzelii, B. garinii, B. burgdorferi and B. bavariensis. This is in contrast to the United States, where infections are exclusively caused by B. burgdorferi. Until to date the genome sequences of four B. afzelii strains, of which only two include the numerous plasmids, are available. In order to further assess the genetic diversity of B. afzelii, the most common species in Europe, responsible for the large variety of clinical manifestations of Lyme borreliosis, we have determined the full genome sequence of the B. afzelii strain K78, a clinical isolate from Austria. The K78 genome contains a linear chromosome (905,949 bp) and 13 plasmids (8 linear and 5 circular) together presenting 1,309 open reading frames of which 496 are located on plasmids. With the exception of lp28-8, all linear replicons in their full length including their telomeres have been sequenced. The comparison with the genomes of the four other B. afzelii strains, ACA-1, PKo, HLJ01 and Tom3107, as well as the one of B. burgdorferi strain B31, confirmed a high degree of conservation within the linear chromosome of B. afzelii, whereas plasmid encoded genes showed a much larger diversity. Since some plasmids present in B. burgdorferi are missing in the B. afzelii genomes, the corresponding virulence factors of B. burgdorferi are found in B. afzelii on other unrelated plasmids. In addition, we have identified a species specific region in the circular plasmid, cp26, which could be used for species determination. Different non-coding RNAs have been located on the B. afzelii K78 genome, which have not previously been annotated in any of the published Borrelia genomes.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy

          The National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) database is a collection of genomic, transcript and protein sequence records. These records are selected and curated from public sequence archives and represent a significant reduction in redundancy compared to the volume of data archived by the International Nucleotide Sequence Database Collaboration. The database includes over 16 000 organisms, 2.4 × 106 genomic records, 13 × 106 proteins and 2 × 106 RNA records spanning prokaryotes, eukaryotes and viruses (RefSeq release 49, September 2011). The RefSeq database is maintained by a combined approach of automated analyses, collaboration and manual curation to generate an up-to-date representation of the sequence, its features, names and cross-links to related sources of information. We report here on recent growth, the status of curating the human RefSeq data set, more extensive feature annotation and current policy for eukaryotic genome annotation via the NCBI annotation pipeline. More information about the resource is available online (see http://www.ncbi.nlm.nih.gov/RefSeq/).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reorganizing the protein space at the Universal Protein Resource (UniProt)

            The mission of UniProt is to support biological research by providing a freely accessible, stable, comprehensive, fully classified, richly and accurately annotated protein sequence knowledgebase, with extensive cross-references and querying interfaces. UniProt is comprised of four major components, each optimized for different uses: the UniProt Archive, the UniProt Knowledgebase, the UniProt Reference Clusters and the UniProt Metagenomic and Environmental Sequence Database. A key development at UniProt is the provision of complete, reference and representative proteomes. UniProt is updated and distributed every 4 weeks and can be accessed online for searches or download at http://www.uniprot.org.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The TIGRFAMs database of protein families.

              TIGRFAMs is a collection of manually curated protein families consisting of hidden Markov models (HMMs), multiple sequence alignments, commentary, Gene Ontology (GO) assignments, literature references and pointers to related TIGRFAMs, Pfam and InterPro models. These models are designed to support both automated and manually curated annotation of genomes. TIGRFAMs contains models of full-length proteins and shorter regions at the levels of superfamilies, subfamilies and equivalogs, where equivalogs are sets of homologous proteins conserved with respect to function since their last common ancestor. The scope of each model is set by raising or lowering cutoff scores and choosing members of the seed alignment to group proteins sharing specific function (equivalog) or more general properties. The overall goal is to provide information with maximum utility for the annotation process. TIGRFAMs is thus complementary to Pfam, whose models typically achieve broad coverage across distant homologs but end at the boundaries of conserved structural domains. The database currently contains over 1600 protein families. TIGRFAMs is available for searching or downloading at www.tigr.org/TIGRFAMs.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                23 March 2015
                2015
                : 10
                : 3
                : e0120548
                Affiliations
                [1 ]Valneva Austria GmbH, Vienna, Austria
                [2 ]Department of Molecular Biology, Umeå University, Umeå, Sweden
                [3 ]Eurofins Genomics GmbH, Ebersberg, Germany
                [4 ]Medical University of Vienna, Institute for Hygiene and Applied Immunology, Vienna, Austria
                University of Kentucky College of Medicine, UNITED STATES
                Author notes

                Competing Interests: WS, PC, AM, and UL are employees of Valneva Austria GmbH. JWL and JH are employees of Eurofins Genomics GmbH. SB is a PLOS ONE Editorial Board Member. There are no further patents, products in development, or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: JH AM SB UL. Performed the experiments: JWL SKB. Analyzed the data: WS IB JWL. Contributed reagents/materials/analysis tools: GS. Wrote the paper: WS IB PC AM SB UL.

                [¤]

                Current address: NGI Uppsala (Uppsala Genome Center), Science for Life Laboratory, Uppsala University, BMC, Uppsala, Sweden

                ‡ SB and UL are joint senior authors on this work.

                Article
                PONE-D-14-47099
                10.1371/journal.pone.0120548
                4370689
                25798594
                4bc02383-97a3-4c4b-a6af-f79ddd80e5a9
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 22 October 2014
                : 23 January 2015
                Page count
                Figures: 4, Tables: 5, Pages: 27
                Funding
                This work was funded by the European Union (512598-BOVAC; grant FA794A0101) and the Swedish Research Council grant number 07922 to SB. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All sequence files are available from the nucleotide database from NCBI (accession number(s) CP009058 - CP009071).

                Uncategorized
                Uncategorized

                Comments

                Comment on this article