10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of Durum Wheat Resistance against Septoria Tritici Blotch under Climate Change Conditions of Increasing Temperature and CO2 Concentration

      , , , ,
      Agronomy
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wheat interactions against fungal pathogens, such as Zymoseptoria tritici, are affected by changes in abiotic factors resulting from global climate change. This situation demands in-depth knowledge of how predicted increases in temperature and CO2 concentration ([CO2]) will affect wheat—Z. tritici interactions, especially in durum wheat, which is mainly grown in areas considered to be hotspots of climate change. Therefore, we characterized the response of one susceptible and two resistant durum wheat accessions against Z. tritici under different environments in greenhouse assays, simulating the predicted conditions of elevated temperature and [CO2] in the far future period of 2070–2099 for the wheat-growing region of Córdoba, Spain. The exposure of the wheat—Z. tritici pathosystem to elevated temperature reduced disease incidence compared with the baseline weather conditions, mainly affecting pathogen virulence, especially at the stages of host penetration and pycnidia formation and maturation. Interestingly, simultaneous exposure to elevated temperature and [CO2] slightly increased Z. tritici leaf tissue colonization compared with elevated temperature weather conditions, although this fungal growth did not occur in comparison with baseline conditions, suggesting that temperature was the main abiotic factor modulating the response of this pathosystem, in which elevated [CO2] slightly favored fungal development.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          NIH Image to ImageJ: 25 years of image analysis

          For the past twenty five years the NIH family of imaging software, NIH Image and ImageJ have been pioneers as open tools for scientific image analysis. We discuss the origins, challenges and solutions of these two programs, and how their history can serve to advise and inform other software projects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The global burden of pathogens and pests on major food crops

            Crop pathogens and pests reduce the yield and quality of agricultural production. They cause substantial economic losses and reduce food security at household, national and global levels. Quantitative, standardized information on crop losses is difficult to compile and compare across crops, agroecosystems and regions. Here, we report on an expert-based assessment of crop health, and provide numerical estimates of yield losses on an individual pathogen and pest basis for five major crops globally and in food security hotspots. Our results document losses associated with 137 pathogens and pests associated with wheat, rice, maize, potato and soybean worldwide. Our yield loss (range) estimates at a global level and per hotspot for wheat (21.5% (10.1-28.1%)), rice (30.0% (24.6-40.9%)), maize (22.5% (19.5-41.1%)), potato (17.2% (8.1-21.0%)) and soybean (21.4% (11.0-32.4%)) suggest that the highest losses are associated with food-deficit regions with fast-growing populations, and frequently with emerging or re-emerging pests and diseases. Our assessment highlights differences in impacts among crop pathogens and pests and among food security hotspots. This analysis contributes critical information to prioritize crop health management to improve the sustainability of agroecosystems in delivering services to societies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Crop losses to pests

              E-C Oerke (2005)
              The Journal of Agricultural Science, 144(1), 31-43 ["Productivity of crops grown for human consumption is at risk due to the incidence of pests, especially weeds, pathogens and animal pests. Crop losses due to these harmful organisms can be substantial and may be prevented, or reduced, by crop protection measures. An overview is given on different types of crop losses as well as on various methods of pest control developed during the last century.", "Estimates on potential and actual losses despite the current crop protection practices are given for wheat, rice, maize, potatoes, soybeans, and cotton for the period 2001–03 on a regional basis (19 regions) as well as for the global total. Among crops, the total global potential loss due to pests varied from about 50% in wheat to more than 80% in cotton production. The responses are estimated as losses of 26–29% for soybean, wheat and cotton, and 31, 37 and 40% for maize, rice and potatoes, respectively. Overall, weeds produced the highest potential loss (34%), with animal pests and pathogens being less important (losses of 18 and 16%). The efficacy of crop protection was higher in cash crops than in food crops. Weed control can be managed mechanically or chemically, therefore worldwide efficacy was considerably higher than for the control of animal pests or diseases, which rely heavily on synthetic chemicals. Regional differences in efficacy are outlined. Despite a clear increase in pesticide use, crop losses have not significantly decreased during the last 40 years. However, pesticide use has enabled farmers to modify production systems and to increase crop productivity without sustaining the higher losses likely to occur from an increased susceptibility to the damaging effect of pests.", "The concept of integrated pest/crop management includes a threshold concept for the application of pest control measures and reduction in the amount/frequency of pesticides applied to an economically and ecologically acceptable level. Often minor crop losses are economically acceptable; however, an increase in crop productivity without adequate crop protection does not make sense, because an increase in attainable yields is often associated with an increased vulnerability to damage inflicted by pests."]
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ABSGGL
                Agronomy
                Agronomy
                MDPI AG
                2073-4395
                October 2023
                October 18 2023
                : 13
                : 10
                : 2638
                Article
                10.3390/agronomy13102638
                4c821a11-cab4-4345-90cf-1e57064f21f1
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article