23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combined exposure to cigarette smoke and nontypeable Haemophilus influenzae drives development of a COPD phenotype in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cigarette smoke (CS) is the major etiologic factor of chronic obstructive pulmonary disease (COPD). CS-exposed mice develop emphysema and mild pulmonary inflammation but no airway obstruction, which is also a prominent feature of COPD. Therefore, CS may interact with other factors, particularly respiratory infections, in the pathogenesis of airway remodeling in COPD.

          Methods

          C57BL/6 mice were exposed to CS for 2 h a day, 5 days a week for 8 weeks. Mice were also exposed to heat-killed non-typeable H. influenzae (HK-NTHi) on days 7 and 21. One day after the last exposure to CS, mice were sacrificed and lung inflammation and mechanics, emphysematous changes, and goblet cell metaplasia were assessed. Mice exposed to CS or HK-NTHi alone or room air served as controls. To determine the susceptibility to viral infections, we also challenged these mice with rhinovirus (RV).

          Results

          Unlike mice exposed to CS or HK-NTHi alone, animals exposed to CS/HK-NTHi developed emphysema, lung inflammation and goblet cell metaplasia in both large and small airways. CS/HK-NTHi-exposed mice also expressed increased levels of mucin genes and cytokines compared to mice in other groups. CS/HK-NTHi-exposed mice infected with RV demonstrated increased viral persistence, sustained neutrophilia, and further increments in mucin gene and chemokine expression compared to other groups.

          Conclusions

          These findings indicate that in addition to CS, bacteria may also contribute to development of COPD, particularly changes in airways. Mice exposed to CS/HK-NTHi are also more susceptible to subsequent viral infection than mice exposed to either CS or HK-NTHi alone.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophage polarization in bacterial infections.

          Converging studies have shown that M1 and M2 macrophages are functionally polarized in response to microorganisms and host mediators. Gene expression profiling of macrophages reveals that various Gram-negative and Gram-positive bacteria induce the transcriptional activity of a "common host response," which includes genes belonging to the M1 program. However, excessive or prolonged M1 polarization can lead to tissue injury and contribute to pathogenesis. The so-called M2 macrophages play a critical role in the resolution of inflammation by producing anti-inflammatory mediators. These M2 cells cover a continuum of cells with different phenotypic and functional properties. In addition, some bacterial pathogens induce specific M2 programs in macrophages. In this review, we discuss the relevance of macrophage polarization in three domains of infectious diseases: resistance to infection, infectious pathogenesis, and chronic evolution of infectious diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling.

            The small airways of the human lung undergo pathological changes in pulmonary disorders, such as chronic obstructive pulmonary disease (COPD), asthma, bronchiolitis obliterans and cystic fibrosis. These clinical problems impose huge personal and societal healthcare burdens. The changes, termed 'pathological airway remodeling', affect the epithelium, the underlying mesenchyme and the reciprocal trophic interactions that occur between these tissues. Most of the normal human airway is lined by a pseudostratified epithelium of ciliated cells, secretory cells and 6-30% basal cells, the proportion of which varies along the proximal-distal axis. Epithelial abnormalities range from hypoplasia (failure to differentiate) to basal- and goblet-cell hyperplasia, squamous- and goblet-cell metaplasia, dysplasia and malignant transformation. Mesenchymal alterations include thickening of the basal lamina, smooth muscle hyperplasia, fibrosis and inflammatory cell accumulation. Paradoxically, given the prevalence and importance of airway remodeling in lung disease, its etiology is poorly understood. This is due, in part, to a lack of basic knowledge of the mechanisms that regulate the differentiation, maintenance and repair of the airway epithelium. Specifically, little is known about the proliferation and differentiation of basal cells, a multipotent stem cell population of the pseudostratified airway epithelium. This Perspective summarizes what we know, and what we need to know, about airway basal cells to evaluate their contributions to normal and abnormal airway remodeling. We contend that exploiting well-described model systems using both human airway epithelial cells and the pseudostratified epithelium of the genetically tractable mouse trachea will enable crucial discoveries regarding the pathogenesis of airway disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Developing COPD: a 25 year follow up study of the general population.

              Smokers are more prone to develop chronic obstructive pulmonary disease (COPD) than non-smokers, but this finding comes from studies spanning 10 years or less. The aim of this study was to determine the 25 year absolute risk of developing COPD in men and women from the general population. As part of the Copenhagen City Heart Study, 8045 men and women aged 30-60 years with normal lung function at baseline were followed for 25 years. Lung function measurements were collected and mortality from COPD during the 25 year observation period was analysed. The percentage of men with normal lung function ranged from 96% of never smokers to 59% of continuous smokers; for women the proportions were 91% and 69%, respectively. The 25 year incidence of moderate and severe COPD was 20.7% and 3.6%, respectively, with no apparent difference between men and women. Smoking cessation, especially early in the follow up period, decreased the risk of developing COPD substantially compared with continuous smoking. During the follow up period there were 2912 deaths, 109 of which were from COPD. 92% of the COPD deaths occurred in subjects who were current smokers at the beginning of the follow up period. The absolute risk of developing COPD among continuous smokers is at least 25%, which is larger than was previously estimated.
                Bookmark

                Author and article information

                Journal
                Respir Res
                Respir. Res
                Respiratory Research
                BioMed Central
                1465-9921
                1465-993X
                2014
                4 February 2014
                : 15
                : 1
                : 11
                Affiliations
                [1 ]Department of Pediatrics and Communicable Diseases, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-5688, USA
                [2 ]School of Public Health, University of Michigan, Ann Arbor, MI, USA
                [3 ]Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO, USA
                [4 ]Veterans Affairs, Eastern Colorado Health Care System, Denver, CO, USA
                Article
                1465-9921-15-11
                10.1186/1465-9921-15-11
                3926338
                24495712
                4df3c24d-bbd2-46ef-b8eb-19e43d08b284
                Copyright © 2014 Ganesan et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 2 December 2013
                : 3 February 2014
                Categories
                Research

                Respiratory medicine
                copd exacerbation,copd pathology,emphysema,airway epithelium,viral infection
                Respiratory medicine
                copd exacerbation, copd pathology, emphysema, airway epithelium, viral infection

                Comments

                Comment on this article