101
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Making Mosquito Taxonomy Useful: A Stable Classification of Tribe Aedini that Balances Utility with Current Knowledge of Evolutionary Relationships

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The tribe Aedini (Family Culicidae) contains approximately one-quarter of the known species of mosquitoes, including vectors of deadly or debilitating disease agents. This tribe contains the genus Aedes, which is one of the three most familiar genera of mosquitoes. During the past decade, Aedini has been the focus of a series of extensive morphology-based phylogenetic studies published by Reinert, Harbach, and Kitching (RH&K). Those authors created 74 new, elevated or resurrected genera from what had been the single genus Aedes, almost tripling the number of genera in the entire family Culicidae. The proposed classification is based on subjective assessments of the “number and nature of the characters that support the branches” subtending particular monophyletic groups in the results of cladistic analyses of a large set of morphological characters of representative species. To gauge the stability of RH&K’s generic groupings we reanalyzed their data with unweighted parsimony jackknife and maximum-parsimony analyses, with and without ordering 14 of the characters as in RH&K. We found that their phylogeny was largely weakly supported and their taxonomic rankings failed priority and other useful taxon-naming criteria. Consequently, we propose simplified aedine generic designations that 1) restore a classification system that is useful for the operational community; 2) enhance the ability of taxonomists to accurately place new species into genera; 3) maintain the progress toward a natural classification based on monophyletic groups of species; and 4) correct the current classification system that is subject to instability as new species are described and existing species more thoroughly defined. We do not challenge the phylogenetic hypotheses generated by the above-mentioned series of morphological studies. However, we reduce the ranks of the genera and subgenera of RH&K to subgenera or informal species groups, respectively, to preserve stability as new data become available.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          West Nile fever--a reemerging mosquito-borne viral disease in Europe.

          West Nile virus causes sporadic cases and outbreaks of human and equine disease in Europe (western Mediterranean and southern Russia in 1962-64, Belarus and Ukraine in the 1970s and 1980s, Romania in 1996-97, Czechland in 1997, and Italy in 1998). Environmental factors, including human activities, that enhance population densities of vector mosquitoes (heavy rains followed by floods, irrigation, higher than usual temperature, or formation of ecologic niches that enable mass breeding of mosquitoes) could increase the incidence of West Nile fever.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vectors of Chikungunya virus in Senegal: current data and transmission cycles.

            Chikungunya fever is a viral disease transmitted to human beings by Aedes genus mosquitoes. From 1972 to 1986 in Kédougou, Senegal, 178 Chikungunya virus strains were isolated from gallery forest mosquitoes, with most of them isolated from Ae. furcifer-taylori (129 strains), Ae. luteocephalus (27 strains), and Ae. dalzieli (12 strains). The characteristics of the sylvatic transmission cycle are a circulation periodicity with silent intervals that last approximately three years. Few epidemics of this disease have been reported in Senegal. The most recent one occurred in 1996 in Kaffrine where two Chikungunya virus strains were isolated from Ae. aegypti. The retrospective analysis of viral isolates from mosquitoes, wild vertebrates, and humans allowed to us to characterize Chikungunya virus transmission cycles in Senegal and to compare them with those of yellow fever virus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Invasion biology of Aedes japonicus japonicus (Diptera: Culicidae).

              Aedes japonicus japonicus (Theobald) (Diptera: Culicidae) has recently expanded beyond its native range of Japan and Korea into large parts of North America and Central Europe. Population genetic studies begun immediately after the species was detected in North America revealed genetically distinct introductions that subsequently merged, likely contributing to the successful expansion. Interactions, particularly in the larval stage, with other known disease vectors give this invasive subspecies the potential to influence local disease dynamics. Its successful invasion likely does not involve superior direct competitive abilities, but it is associated with the use of diverse larval habitats and a cold tolerance that allows an expanded seasonal activity range in temperate climates. We predict a continued but slower expansion of Ae. j. japonicus in North America and a continued rapid expansion into other areas as this mosquito will eventually be considered a permanent resident of much of North America, Europe, Asia, and parts of Hawaii.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                30 July 2015
                2015
                : 10
                : 7
                : e0133602
                Affiliations
                [1 ]Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington DC, United States of America
                [2 ]Walter Reed Biosystematics Unit, Museum Support Center, Smithsonian Institution, Suitland, Maryland, United States of America
                [3 ]Department of Entomology, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
                [4 ]Faculty of Preventative Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
                [5 ]Entomology Department, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
                [6 ]Global Health Program, Bill and Melinda Gates Foundation, Seattle, Washington, United States of America
                The National Orchid Conservation Center of China; The Orchid Conservation & Research Center of Shenzhen, CHINA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: TRS RCW YML. Performed the experiments: TRS. Analyzed the data: TRS RCW YML. Wrote the paper: RCW YML DMF TRS DAS DCP. Initiated this study: RCW DCP DAS YML.

                Article
                PONE-D-15-10179
                10.1371/journal.pone.0133602
                4520491
                26226613
                4e5d866a-cd40-4dac-8ec9-cbc5e1457f0f

                This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication

                History
                : 8 March 2015
                : 22 June 2015
                Page count
                Figures: 3, Tables: 1, Pages: 26
                Funding
                The authors received no specific funding for this work, except institutional support. This manuscript was prepared while YML held a National Research Council (NRC) Research Associateship Award at the Walter Reed Army Institute of Research. The affiliated institutions had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The material to be published reflects the views of the authors and should not be construed to represent those of the US Department of the Army or the US Department of Defense.
                Categories
                Research Article
                Custom metadata
                Data analyzed in this study were originally generated and published by Reinert, Harbach and Kitching (2009), Zool J Linn Soc 157: 700-794, and were retrieved manually. The nexus file dataset we used is publically available on the website of the Walter Reed Biosystematics Unit: ( www.wrbu.org/DOCS/MQ0463.pdf).

                Uncategorized
                Uncategorized

                Comments

                Comment on this article