2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Lactobacillus helveticus KLDS1.8701 alleviates d-galactose-induced aging by regulating Nrf-2 and gut microbiota in mice

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We first revealed a close association between probiotic-manipulated gut microbiota and hepatic Nrf-2 dependent mechanisms to suppress d-galactose-induced aging.

          Abstract

          Aging is commonly associated with chronic oxidative stress and mild inflammation that can cause a variety of degenerative diseases. Lactic acid bacteria (LAB) provide several health benefits to the host including antioxidant activity and immune system regulation. However, there is a lack of information regarding the antioxidant mechanisms of probiotics in vivo. Therefore, the aim of this study was to elucidate the possible mechanisms for the preventive effect of LAB on aging. First, 25 LAB strains were screened for finding potential probiotics with high antioxidant capacity using in vitro methods. Second, d-galactose was administered by subcutaneous injection once daily for 8 weeks to establish an aging mouse model to investigate the protective effects and underlying mechanisms of the potential probiotic strain Lactobacillus helveticus KLDS1.8701, identified from the screening. The results in vitro showed that L. helveticus KLDS1.8701 had a better property with remarkable free radical scavenging activity. In vivo, L. helveticus KLDS1.8701 supplementation significantly ameliorated aging-related changes such as decreased organic index, liver injury and increased endotoxin. L. helveticus KLDS1.8701 supplementation reduced hepatic oxidative stress by modulating the Nrf-2 pathway. Notably, L. helveticus KLDS1.8701 supplementation restored the gut microbiota composition to that of the control group, resulting in increased butyrate production and decreased endotoxin production. These findings indicated that L. helveticus KLDS1.8701 supplementation manipulated gut microbiota and its metabolites could attenuate hepatic oxidative stress via the gut–liver axis.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          FLASH: fast length adjustment of short reads to improve genome assemblies.

          Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gut microbiome, obesity, and metabolic dysfunction.

            The prevalence of obesity and related disorders such as metabolic syndrome has vastly increased throughout the world. Recent insights have generated an entirely new perspective suggesting that our microbiota might be involved in the development of these disorders. Studies have demonstrated that obesity and metabolic syndrome may be associated with profound microbiotal changes, and the induction of a metabolic syndrome phenotype through fecal transplants corroborates the important role of the microbiota in this disease. Dietary composition and caloric intake appear to swiftly regulate intestinal microbial composition and function. As most findings in this field of research are based on mouse studies, the relevance to human biology requires further investigation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IBD-what role do Proteobacteria play?

              The gastrointestinal microbiota has come to the fore in the search for the causes of IBD. This shift has largely been driven by the finding of genetic polymorphisms involved in gastrointestinal innate immunity (particularly polymorphisms in NOD2 and genes involved in autophagy) and alterations in the composition of the microbiota that might result in inflammation (so-called dysbiosis). Microbial diversity studies have continually demonstrated an expansion of the Proteobacteria phylum in patients with IBD. Individual Proteobacteria, in particular (adherent-invasive) Escherichia coli, Campylobacter concisus and enterohepatic Helicobacter, have all been associated with the pathogenesis of IBD. In this Review, we comprehensively describe the various associations of Proteobacteria and IBD. We also examine the importance of pattern recognition in the extracellular innate immune response of the host with particular reference to Proteobacteria, and postulate that Proteobacteria with adherent and invasive properties might exploit host defenses, drive proinflammatory change, alter the intestinal microbiota in favor of dysbiosis and ultimately lead to the development of IBD.
                Bookmark

                Author and article information

                Journal
                FFOUAI
                Food & Function
                Food Funct.
                Royal Society of Chemistry (RSC)
                2042-6496
                2042-650X
                December 13 2018
                2018
                : 9
                : 12
                : 6586-6598
                Affiliations
                [1 ]Key Laboratory of Dairy Science
                [2 ]Ministry of Education
                [3 ]Northeast Agricultural University
                [4 ]Harbin 150030
                [5 ]China
                [6 ]Center of Drug Safety Evaluation
                [7 ]Heilongjiang University of Chinese Medicine
                [8 ]Harbin 150040
                Article
                10.1039/C8FO01768A
                30488048
                4efe60d5-8708-46de-b899-086a630c07b6
                © 2018

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article