2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Physiological significance of ghrelin in the cardiovascular system

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ghrelin, a growth hormone-releasing peptide first discovered in rat stomach in 1999, is a ligand for the growth hormone secretagogue receptor. It participates in the regulation of diverse processes, including energy balance and body weight maintenance, and appears to be beneficial for the treatment of cardiovascular diseases. In animal models of chronic heart failure, ghrelin improves cardiac function and remodeling; these findings have been recapitulated in human patients. In other animal models, ghrelin effectively diminishes pulmonary hypertension. Moreover, ghrelin administration early after myocardial infarction decreased the frequency of fatal arrhythmia and improved survival rate. In ghrelin-deficient mice, endogenous ghrelin protects against fatal arrhythmia and promotes remodeling after myocardial infarction. Although the mechanisms underlying the effects of ghrelin on the cardiovascular system have not been fully elucidated, its beneficial effects appear to be mediated through regulation of the autonomic nervous system. Ghrelin is a promising therapeutic agent for cardiac diseases.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          A receptor in pituitary and hypothalamus that functions in growth hormone release.

          Small synthetic molecules termed growth hormone secretagogues (GHSs) act on the pituitary gland and the hypothalamus to stimulate and amplify pulsatile growth hormone (GH) release. A heterotrimeric GTP-binding protein (G protein)-coupled receptor (GPC-R) of the pituitary and arcuate ventro-medial and infundibular hypothalamus of swine and humans was cloned and was shown to be the target of the GHSs. On the basis of its pharmacological and molecular characterization, this GPC-R defines a neuroendocrine pathway for the control of pulsatile GH release and supports the notion that the GHSs mimic an undiscovered hormone.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans.

            Ghrelin is a novel growth hormone-releasing peptide, originally identified in the rat stomach as the endogenous ligand for the growth hormone secretagogue-receptor (GHS-R1a). Ghrelin is involved in the regulation of GH release, but it has recently been suggested that ghrelin may have other actions, including effects on appetite, carbohydrate metabolism, heart, kidney, pancreas, gonads, and cell proliferation. The distribution of ghrelin, its functional receptor (type 1a) and the unspliced, non-functional GHS-R type 1b mRNA expression was investigated in various human tissues using classical and real-time reverse transcription and polymerase chain reaction. GHS-R1a was predominantly expressed in the pituitary and at much lower levels in the thyroid gland, pancreas, spleen, myocardium and adrenal gland. In contrast, ghrelin was found in the stomach, other parts of the gut and, indeed, in all the tissues studied (adrenal gland, atrium, breast, buccal mucosa, esophagus, Fallopian tube, fat tissue, gall bladder, human lymphocytes, ileum, kidney, left colon, liver, lung, lymph node, muscle, muscle, myocardium, ovary, pancreas, pituitary, placenta, prostate, right colon, skin, spleen, testis, thyroid, and vein). GHS-R1b expression was also widespread in all tissues studied. The significance of the widespread tissue distribution of ghrelin remains to be determined. These data suggest that ghrelin might have widespread physiological effects via different, partly unidentified, subtypes of the GHS-R in endocrine and non-endocrine tissues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans.

              Ghrelin, an endogenous ligand for the GH secretagogue receptor, was isolated from rat stomach and is involved in a novel system for regulating GH release. Although previous studies in rodents suggest that ghrelin is also involved in energy homeostasis and that ghrelin secretion is influenced by feeding, little is known about plasma ghrelin in humans. To address this issue, we studied plasma ghrelin-like immunoreactivity levels and elucidated the source of circulating ghrelin and the effects of feeding state on plasma ghrelin-like immunoreactivity levels in humans. The plasma ghrelin-like immunoreactivity concentration in normal humans measured by a specific RIA was 166.0 +/- 10.1 fmol/ml. Northern blot analysis of various human tissues identified ghrelin mRNA found most abundantly in the stomach and plasma ghrelin-like immunoreactivity levels in totally gastrectomized patients were reduced to 35% of those in normal controls. Plasma ghrelin-like immunoreactivity levels were increased by 31% after 12-h fasting and reduced by 22% immediately after habitual feeding. In patients with anorexia nervosa, plasma ghrelin-like immunoreactivity levels were markedly elevated compared with those in normal controls (401.2 +/- 58.4 vs. 192.8 +/- 19.4 fmol/ml) and were negatively correlated with body mass indexes. We conclude that the stomach is a major source of circulating ghrelin and that plasma ghrelin-like immunoreactivity levels reflect acute and chronic feeding states in humans.
                Bookmark

                Author and article information

                Journal
                Proc Jpn Acad Ser B Phys Biol Sci
                Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci
                PJAB
                Proceedings of the Japan Academy. Series B, Physical and Biological Sciences
                The Japan Academy (Tokyo, Japan )
                0386-2208
                1349-2896
                11 October 2019
                : 95
                : 8
                : 459-467
                Affiliations
                [1 ]Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
                [2 ]National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.
                Author notes
                []Correspondence should be addressed: T. Tokudome, Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibeshinmachi, Suita, Osaka 564-8565, Japan (e-mail: tokudome@ 123456ncvc.go.jp ).

                (Edited by Hiroo IMURA, M.J.A.)

                Article
                pjab-95-459
                10.2183/pjab.95.032
                6819151
                31611501
                4f6407de-f5e2-49ee-98d9-88f0b4ed4650
                © 2019 The Japan Academy

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 April 2019
                : 10 June 2019
                Categories
                Review

                Life sciences
                ghrelin,ghs-r,cardiovascular system
                Life sciences
                ghrelin, ghs-r, cardiovascular system

                Comments

                Comment on this article