1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tris(dibenzylideneacetone)dipalladium(0) (Tris DBA) Abrogates Tumor Progression in Hepatocellular Carcinoma and Multiple Myeloma Preclinical Models by Regulating the STAT3 Signaling Pathway

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          STAT3 is an oncogenic transcription factor that controls the expression of genes associated with oncogenesis and malignant progression. Persistent activation of STAT3 is observed in human malignancies, including hepatocellular carcinoma (HCC) and multiple myeloma (MM). Here, we have investigated the action of Tris(dibenzylideneacetone) dipalladium 0 (Tris DBA) on STAT3 signaling in HCC and MM cells. Tris DBA decreased cell viability, increased apoptosis, and inhibited IL-6 induced/constitutive activation of STAT3, JAK1, JAK2, and Src in HCC and MM cells. Tris DBA downmodulated the nuclear translocation of STAT3 and reduced its DNA binding ability. It upregulated the expression of SHP2 (protein and mRNA) to induce STAT3 dephosphorylation, and the inhibition of SHP2 reversed this effect. Tris DBA downregulated the expression of STAT3-driven genes, suppressed cell migration/invasion. Tris DBA significantly inhibited tumor growth in xenograft MM and orthotopic HCC preclinical mice models with a reduction in the expression of various prosurvival biomarkers in MM tumor tissues without displaying significant toxicity. Overall, Tris DBA functions as a good inhibitor of STAT3 signaling in preclinical HCC and MM models.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

          This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular mechanisms of epithelial-mesenchymal transition.

            The transdifferentiation of epithelial cells into motile mesenchymal cells, a process known as epithelial-mesenchymal transition (EMT), is integral in development, wound healing and stem cell behaviour, and contributes pathologically to fibrosis and cancer progression. This switch in cell differentiation and behaviour is mediated by key transcription factors, including SNAIL, zinc-finger E-box-binding (ZEB) and basic helix-loop-helix transcription factors, the functions of which are finely regulated at the transcriptional, translational and post-translational levels. The reprogramming of gene expression during EMT, as well as non-transcriptional changes, are initiated and controlled by signalling pathways that respond to extracellular cues. Among these, transforming growth factor-β (TGFβ) family signalling has a predominant role; however, the convergence of signalling pathways is essential for EMT.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Review of hepatocellular carcinoma: Epidemiology, etiology, and carcinogenesis

              Since the 1970s, the epidemic of hepatocellular carcinoma (HCC) has spread beyond the Eastern Asian predominance and has been increasing in Northern hemisphere, especially in the United States (US) and Western Europe. It occurs more commonly in males in the fourth and fifth decades of life. Among all cancers, HCC is one of the fastest growing causes of death in the US and poses a significant economic burden on healthcare. Chronic liver disease due to hepatitis B virus or hepatitis C virus and alcohol accounts for the majority of HCC cases. Incidence of nonalcoholic fatty liver disease has been on the risem and it has also been associated with the development of HCC. Its pathogenesis varies based on the underlying etiological factor although majority of cases develop in the setting of background cirrhosis. Carcinogenesis of HCC includes angiogenesis, chronic inflammation, and tumor macroenvironment and microenvironment. There is a significant role of both intrinsic genetic risk factors and extrinsic influences such as alcohol or viral infections that lead to the development of HCC. Understanding its etiopathogenesis helps select appropriate diagnostic tests and treatments.
                Bookmark

                Author and article information

                Contributors
                Journal
                CANCCT
                Cancers
                Cancers
                MDPI AG
                2072-6694
                November 2021
                October 31 2021
                : 13
                : 21
                : 5479
                Article
                10.3390/cancers13215479
                34771643
                4f9420b1-e721-4b3f-9ce7-b3eac721aaaa
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article