3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The potential protective influence of flaxseed oil against renal toxicity induced by thioacetamide in rats

      research-article
      Saudi Journal of Biological Sciences
      Elsevier
      Thioacetamide, Renal toxicity, Flaxseed oil, Rats

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present study was aimed to evaluate the influence of flaxseed oil on renal toxicity induced by thioacetamide in male rats. The animals were distributed into four groups. Rats of the first group were served as control. Rats of the second group were exposed to thioacetamide. Rats of the third group were treated with flaxseed oil and thioacetamide. Rats of the fourth group were treated with flaxseed oil. Significant increases of blood creatinine and uric acid were observed in TAA-treated rats after three weeks. In thioacetamide group, the levels of serum creatinine, blood urea nitrogen and uric acid were significantly elevated after six weeks. Histopathologically, the renal sections from thioacetamide-treated rats showed severe alterations in the structure of renal corpuscles including a degeneration of glomeruli and Bowman’s capsules. Administration of flaxseed oil protects the observed biochemical and histopathological alterations induced by thioacetamide exposure. Hence, the results of this study suggest that flaxseed oil protects against thioacetamide-induced renal injury and the protective influence of flaxseed oil may be attributed to its antioxidant role.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Antioxidant activity of plant extracts containing phenolic compounds.

          The antioxidative activity of a total of 92 phenolic extracts from edible and nonedible plant materials (berries, fruits, vegetables, herbs, cereals, tree materials, plant sprouts, and seeds) was examined by autoxidation of methyl linoleate. The content of total phenolics in the extracts was determined spectrometrically according to the Folin-Ciocalteu procedure and calculated as gallic acid equivalents (GAE). Among edible plant materials, remarkable high antioxidant activity and high total phenolic content (GAE > 20 mg/g) were found in berries, especially aronia and crowberry. Apple extracts (two varieties) showed also strong antioxidant activity even though the total phenolic contents were low (GAE < 12.1 mg/g). Among nonedible plant materials, high activities were found in tree materials, especially in willow bark, spruce needles, pine bark and cork, and birch phloem, and in some medicinal plants including heather, bog-rosemary, willow herb, and meadowsweet. In addition, potato peel and beetroot peel extracts showed strong antioxidant effects. To utilize these significant sources of natural antioxidants, further characterization of the phenolic composition is needed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure-antioxidant activity relationships of flavonoids and phenolic acids.

            The recent explosion of interest in the bioactivity of the flavonoids of higher plants is due, at least in part, to the potential health benefits of these polyphenolic components of major dietary constituents. This review article discusses the biological properties of the flavonoids and focuses on the relationship between their antioxidant activity, as hydrogen donating free radical scavengers, and their chemical structures. This culminates in a proposed hierarchy of antioxidant activity in the aqueous phase. The cumulative findings concerning structure-antioxidant activity relationships in the lipophilic phase derive from studies on fatty acids, liposomes, and low-density lipoproteins; the factors underlying the influence of the different classes of polyphenols in enhancing their resistance to oxidation are discussed and support the contention that the partition coefficients of the flavonoids as well as their rates of reaction with the relevant radicals define the antioxidant activities in the lipophilic phase.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Protection of SH-SY5Y Neuronal Cells from Glutamate-Induced Apoptosis by 3,6′-Disinapoyl Sucrose, a Bioactive Compound Isolated from Radix Polygala

              The neuroprotective effects of 3,6′-disinapoyl sucrose (DISS) from Radix Polygala against glutamate-induced SH-SY5Y neuronal cells injury were evaluated in the present study. SH-SY5Y neuronal cells were pretreated with glutamate (8 mM) for 30 min followed by cotreatment with DISS for 12 h. Cell viability was determined by (3,4,5-dimethylthiazol-2-yl)-2,5-diphenylte-trazolium bromide (MTT) assay, and apoptosis was confirmed by cell morphology and flow cytometry assay, evaluated with propidium iodide dye. Treatment with DISS (0.6, 6, and 60 μmol/L) increased cell viability dose dependently, inhibited LDH release, and attenuated apoptosis. The mechanisms by which DISS protected neuron cells from glutamate-induced excitotoxicity included the downregulation of proapoptotic gene Bax and the upregulation of antiapoptotic gene Bcl-2. The present findings indicated that DISS exerts neuroprotective effects against glutamate toxicity, which might be of importance and contribute to its clinical efficacy for the treatment of neurodegenerative diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Saudi J Biol Sci
                Saudi J Biol Sci
                Saudi Journal of Biological Sciences
                Elsevier
                1319-562X
                2213-7106
                01 October 2016
                December 2018
                01 October 2016
                : 25
                : 8
                : 1696-1702
                Affiliations
                Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 8020, Jeddah 21589, Saudi Arabia
                Article
                S1319-562X(16)30119-X
                10.1016/j.sjbs.2016.09.021
                6303138
                30591787
                4fc8ee85-49dd-4b49-96b8-e5de5640a221
                © 2016 Production and hosting by Elsevier B.V. on behalf of King Saud University.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 15 June 2016
                : 10 August 2016
                : 25 September 2016
                Categories
                Article

                thioacetamide,renal toxicity,flaxseed oil,rats
                thioacetamide, renal toxicity, flaxseed oil, rats

                Comments

                Comment on this article