12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Discovery and development of NA-1 for the treatment of acute ischemic stroke

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stroke creates a complex interplay of multiple signaing pathways including excitotoxicity, ionic imbalance, inflammation, oxidative stress and apoptosis. There are very few treatments that have been shown to be beneficial in acute stroke. Recent findings have provided insights into the pathophysiology and mechanisms of ischemic stroke, complementing the traditional glutamate hypothesis: the molecular interaction between PSD95 and GluN2B has been identified as a culprit in stroke-mediated excitotoxicity, leading to the discovery of NA-1, a peptide that disrupts that interaction, as a potent neuroprotective agent for the treatment of acute stroke. In this review we describe its signaling cascade, the target of its therapeutic intervention and its translation from bench to clinical trial.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Developmental and regional expression in the rat brain and functional properties of four NMDA receptors.

          An in situ study of mRNAs encoding NMDA receptor subunits in the developing rat CNS revealed that, at all stages, the NR1 gene is expressed in virtually all neurons, whereas the four NR2 transcripts display distinct expression patterns. NR2B and NR2D mRNAs occur prenatally, whereas NR2A and NR2C mRNAs are first detected near birth. All transcripts except NR2D peak around P20. NR2D mRNA, present mainly in midbrain structures, peaks around P7 and thereafter decreases to adult levels. Postnatally, NR2B and NR2C transcript levels change in opposite directions in the cerebellar internal granule cell layer. In the adult hippocampus, NR2A and NR2B mRNAs are prominent in CA1 and CA3 pyramidal cells, but NR2C and NR2D mRNAs occur in different subsets of interneurons. Recombinant binary NR1-NR2 channels show comparable Ca2+ permeabilities, but marked differences in voltage-dependent Mg2+ block and in offset decay time constants. Thus, the distinct expression profiles and functional properties of NR2 subunits provide a basis for NMDA channel heterogeneity in the brain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vivo protein transduction: delivery of a biologically active protein into the mouse.

            Delivery of therapeutic proteins into tissues and across the blood-brain barrier is severely limited by the size and biochemical properties of the proteins. Here it is shown that intraperitoneal injection of the 120-kilodalton beta-galactosidase protein, fused to the protein transduction domain from the human immunodeficiency virus TAT protein, results in delivery of the biologically active fusion protein to all tissues in mice, including the brain. These results open new possibilities for direct delivery of proteins into patients in the context of protein therapy, as well as for epigenetic experimentation with model organisms.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Cloned glutamate receptors.

                Bookmark

                Author and article information

                Journal
                Acta Pharmacol Sin
                Acta Pharmacol. Sin
                Acta Pharmacologica Sinica
                Nature Publishing Group
                1671-4083
                1745-7254
                May 2018
                22 March 2018
                1 May 2018
                : 39
                : 5
                : 661-668
                Affiliations
                [1 ]Institute of Medical Science, University of Toronto , Toronto, Ontario
                [2 ]Division of Neurosurgery, Institute of Medical Science Toronto Western Research Institute, University of Toronto , University Health Network 60 Leonard avenue, 8KD-406, Toronto, Ontario M5T 2R1, Canada
                Author notes
                Article
                aps20185
                10.1038/aps.2018.5
                5943917
                29565039
                4ff09a92-a0be-4d12-a685-2b44d742793d
                Copyright © 2018 The Author(s)

                This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 27 November 2017
                : 22 January 2018
                Categories
                Review Article

                Pharmacology & Pharmaceutical medicine
                ischemic stroke,psd-95,glun2b,protein-protein interaction,na-1,tat-nr2b9c

                Comments

                Comment on this article