48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metal halide perovskites represent a flourishing area of research, which is driven by both their potential application in photovoltaics and optoelectronics and by the fundamental science behind their unique optoelectronic properties. The emergence of new colloidal methods for the synthesis of halide perovskite nanocrystals, as well as the interesting characteristics of this new type of material, has attracted the attention of many researchers. This review aims to provide an up-to-date survey of this fast-moving field and will mainly focus on the different colloidal synthesis approaches that have been developed. We will examine the chemistry and the capability of different colloidal synthetic routes with regard to controlling the shape, size, and optical properties of the resulting nanocrystals. We will also provide an up-to-date overview of their postsynthesis transformations, and summarize the various solution processes that are aimed at fabricating halide perovskite-based nanocomposites. Furthermore, we will review the fundamental optical properties of halide perovskite nanocrystals by focusing on their linear optical properties, on the effects of quantum confinement, and on the current knowledge of their exciton binding energies. We will also discuss the emergence of nonlinear phenomena such as multiphoton absorption, biexcitons, and carrier multiplication. Finally, we will discuss open questions and possible future directions.

          Related collections

          Most cited references412

          • Record: found
          • Abstract: found
          • Article: not found

          Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics.

          We show nanoscale phase stabilization of CsPbI3 quantum dots (QDs) to low temperatures that can be used as the active component of efficient optoelectronic devices. CsPbI3 is an all-inorganic analog to the hybrid organic cation halide perovskites, but the cubic phase of bulk CsPbI3 (α-CsPbI3)-the variant with desirable band gap-is only stable at high temperatures. We describe the formation of α-CsPbI3 QD films that are phase-stable for months in ambient air. The films exhibit long-range electronic transport and were used to fabricate colloidal perovskite QD photovoltaic cells with an open-circuit voltage of 1.23 volts and efficiency of 10.77%. These devices also function as light-emitting diodes with low turn-on voltage and tunable emission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Solar cells. Impact of microstructure on local carrier lifetime in perovskite solar cells.

            The remarkable performance of hybrid perovskite photovoltaics is attributed to their long carrier lifetimes and high photoluminescence (PL) efficiencies. High-quality films are associated with slower PL decays, and it has been claimed that grain boundaries have a negligible impact on performance. We used confocal fluorescence microscopy correlated with scanning electron microscopy to spatially resolve the PL decay dynamics from films of nonstoichiometric organic-inorganic perovskites, CH3NH3PbI3(Cl). The PL intensities and lifetimes varied between different grains in the same film, even for films that exhibited long bulk lifetimes. The grain boundaries were dimmer and exhibited faster nonradiative decay. Energy-dispersive x-ray spectroscopy showed a positive correlation between chlorine concentration and regions of brighter PL, whereas PL imaging revealed that chemical treatment with pyridine could activate previously dark grains. Copyright © 2015, American Association for the Advancement of Science.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I)

              Postsynthetic chemical transformations of colloidal nanocrystals, such as ion-exchange reactions, provide an avenue to compositional fine-tuning or to otherwise inaccessible materials and morphologies. While cation-exchange is facile and commonplace, anion-exchange reactions have not received substantial deployment. Here we report fast, low-temperature, deliberately partial, or complete anion-exchange in highly luminescent semiconductor nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). By adjusting the halide ratios in the colloidal nanocrystal solution, the bright photoluminescence can be tuned over the entire visible spectral region (410–700 nm) while maintaining high quantum yields of 20–80% and narrow emission line widths of 10–40 nm (from blue to red). Furthermore, fast internanocrystal anion-exchange is demonstrated, leading to uniform CsPb(Cl/Br)3 or CsPb(Br/I)3 compositions simply by mixing CsPbCl3, CsPbBr3, and CsPbI3 nanocrystals in appropriate ratios.
                Bookmark

                Author and article information

                Journal
                Chem Rev
                Chem. Rev
                cr
                chreay
                Chemical Reviews
                American Chemical Society
                0009-2665
                1520-6890
                13 February 2019
                13 March 2019
                : 119
                : 5 , Perovskites
                : 3296-3348
                Affiliations
                []Nanochemistry Department, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
                []Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova , Via Dodecaneso 31, 16146 Genova, Italy
                [φ ]Nanospectroscopy Group, Department of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU) , Amalienstaße 54, 80799 Munich, Germany
                []Kavli Institute of Nanoscience and Department of Chemical Engineering, Delft University of Technology , PO Box 5, 2600AA Delft, The Netherlands
                Author notes
                Article
                10.1021/acs.chemrev.8b00644
                6418875
                30758194
                5053d342-9b53-4e31-9db2-4ca76dc040b5
                Copyright © 2019 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 26 October 2018
                Categories
                Review
                Custom metadata
                cr8b00644
                cr-2018-00644b

                Chemistry
                Chemistry

                Comments

                Comment on this article