10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ionic selectivity of low-affinity ratiometric calcium indicators: mag-Fura-2, Fura-2FF and BTC.

      Cell Calcium
      Animals, Benzothiazoles, Calcium, metabolism, Cations, Cells, Cultured, Cerebral Cortex, Chelating Agents, Coumarins, Fluorescent Dyes, Fura-2, analogs & derivatives, Glycine, Hydrogen-Ion Concentration, Mice, Neurons, Spectrometry, Fluorescence

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accurate measurement of elevated intracellular calcium levels requires indicators with low calcium affinity and high selectivity. We examined fluorescence spectral properties and ionic specificity of three low-affinity, ratiometric indicators structurally related to Fura-2: mag-Fura-2 (furaptra), Fura-2FF, and BTC. The indicators differed in respect to their excitation wavelengths, affinity for Ca2+ (Kd approximately 20 microM, 6 microM and 12 microM respectively) and selectivity over Mg2+ (Kd approximately 2 mM for mag-Fura-2, > 10 mM for Fura-2FF and BTC). Among the tested indicators, BTC was limited by a modest dynamic range upon Ca2+ binding, susceptibility to photodamage, and sensitivity to alterations in pH. All three indicators bound other metal ions including Zn2+, Cd2+ and Gd3+. Interestingly, only in the case of BTC were spectral differences apparent between Ca2+ and other metal ions. For example, the presence of Zn2+ increased BTC fluorescence 6-fold at the Ca2+ isosbestic point, suggesting that this dye may be used as a fluorescent Zn2+ indicator. Fura-2FF has high specificity, wide dynamic range, and low pH sensitivity, and is an optimal low-affinity Ca2+ indicator for most imaging applications. BTC may be useful if experimental conditions require visible wavelength excitation or sensitivity to other metal ions including Zn2+.

          Related collections

          Author and article information

          Comments

          Comment on this article