9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Review of Last Decade Developments on Epiretinal Membrane Pathogenesis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epiretinal membrane (ERM) is a pathologic tissue that develops at the vitreoretinal interface. ERM is responsible for pathological changes of vision with varying degrees of clinical significance. It is either idiopathic or secondary to a wide variety of diseases such as proliferative diabetic retinopathy (PDR) and proliferative vitreoretinopathy (PVR). A great variation in the prevalence of idiopathic ERM among different ethnic groups proposed that genetic and lifestyle factors may play a role in ERM occurrence. Histopathological studies demonstrate that various cell types including retinal pigment epithelium (RPE) cells, fibrocytes, fibrous astrocytes, myofibroblast-like cells, glial cells, endothelial cells (ECs) and macrophages, as well as trophic and transcription factors, including transforming growth factor (TGF), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) etc., are directly or indirectly involved in the pathogenesis of idiopathic or secondary ERMs. These processes are driven (on the last count) by more than 50 genes, such as Tumor Necrosis Factor (TNF), CCL2 (chemokine (C-C motif) ligand )), Metastasis Associated Lung Adenocarcinoma Transcript 1 )MALAT1(, transforming growth factor (TGF)-β1, TGF-β2, Interleukin-6 (IL-6), IL-10, VEGF and glial fibrillary acidic protein (GFAP), some of which have been studied more intensely than others. The present paper tried to summarize, highlight and cross-correlate the major findings made in the last decade on the function of these genes and their association with different types of cells, genes and gene expression products in the ERM formation.

          Related collections

          Most cited references131

          • Record: found
          • Abstract: found
          • Article: not found

          Function and activation of NF-kappa B in the immune system.

          NF-kappa B is a ubiquitous transcription factor. Nevertheless, its properties seem to be most extensively exploited in cells of the immune system. Among these properties are NF-kappa B's rapid posttranslational activation in response to many pathogenic signals, its direct participation in cytoplasmic/nuclear signaling, and its potency to activate transcription of a great variety of genes encoding immunologically relevant proteins. In vertebrates, five distinct DNA binding subunits are currently known which might extensively heterodimerize, thereby forming complexes with distinct transcriptional activity, DNA sequence specificity, and cell type- and cell stage-specific distribution. The activity of DNA binding NF-kappa B dimers is tightly controlled by accessory proteins called I kappa B subunits of which there are also five different species currently known in vertebrates. I kappa B proteins inhibit DNA binding and prevent nuclear uptake of NF-kappa B complexes. An exception is the Bcl-3 protein which in addition can function as a transcription activating subunit in th nucleus. Other I kappa B proteins are rather involved in terminating NF-kappa B's activity in the nucleus. The intracellular events that lead to the inactivation of I kappa B, i.e. the activation of NF-kappa B, are complex. They involve phosphorylation and proteolytic reactions and seem to be controlled by the cells' redox status. Interference with the activation or activity of NF-kappa B may be beneficial in suppressing toxic/septic shock, graft-vs-host reactions, acute inflammatory reactions, acute phase response, and radiation damage. The inhibition of NF-kappa B activation by antioxidants and specific protease inhibitors may provide a pharmacological basis for interfering with these acute processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption.

            Aquaporin-1 (AQP1) is a water channel protein expressed widely in vascular endothelia, where it increases cell membrane water permeability. The role of AQP1 in endothelial cell function is unknown. Here we show remarkably impaired tumour growth in AQP1-null mice after subcutaneous or intracranial tumour cell implantation, with reduced tumour vascularity and extensive necrosis. A new mechanism for the impaired angiogenesis was established from cell culture studies. Although adhesion and proliferation were similar in primary cultures of aortic endothelia from wild-type and from AQP1-null mice, cell migration was greatly impaired in AQP1-deficient cells, with abnormal vessel formation in vitro. Stable transfection of non-endothelial cells with AQP1 or with a structurally different water-selective transporter (AQP4) accelerated cell migration and wound healing in vitro. Motile AQP1-expressing cells had prominent membrane ruffles at the leading edge with polarization of AQP1 protein to lamellipodia, where rapid water fluxes occur. Our findings support a fundamental role of water channels in cell migration, which is central to diverse biological phenomena including angiogenesis, wound healing, tumour spread and organ regeneration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes.

              MALAT-1, a long non-coding RNA, is associated with metastasis, but its role in the metastatic process remains unknown. Here, we show that short-interfering RNA-mediated MALAT-1 silencing impaired in vitro cell motility of lung cancer cells and influenced the expression of numerous genes. In these genes, knockdown of any one of CTHRC1, CCT4, HMMR, or ROD1 clearly inhibited cell migration. In MALAT-1 knockdown cells, pre-mRNA levels were decreased in some but not all genes. Thus, our findings suggest that MALAT-1 is a novel class of non-coding RNA that promotes cell motility through transcriptional and post-transcriptional regulation of motility related gene expression. Copyright © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Med Hypothesis Discov Innov Ophthalmol
                mehdiophth
                Medical Hypothesis, Discovery and Innovation in Ophthalmology
                Medical Hypothesis, Discovery & Innovation Ophthalmology
                2322-4436
                2322-3219
                Summer 2020
                20 March 2020
                : 9
                : 2
                : 91-110
                Affiliations
                [1 ]Ophthalmica Eye Institute, Thessaloniki, Greece.
                [2 ]Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
                [3 ]Department of Ophthalmology, 424 General Military Hospital, Thessaloniki, Greece.
                [4 ]Association for Training in Biomedical Technology, Thessaloniki, Greece.
                Author notes
                Correspondence to: George Anogeianakis MD, PhD; Ophthalmica Eye Institute, Vas Olgas 196 & Ploutonos 27, 54655 Thessaloniki, Greece. Tel: +306976637334. E-mail: anogian@auth.gr
                Article
                mehdiophth-9-091
                7134239
                32490016
                5081f389-dff6-40d3-b4c0-0ff61ab32e82
                Copyright © 2020, Author(s)

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial 4.0 International License ( http://creativecommons.org/licenses/by/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.

                History
                Categories
                Review Article

                epiretinal membrane,erm,pathogenesis,idiopathic,secondary,cell types,trophic factors,transcription factors

                Comments

                Comment on this article