73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human BAT Possesses Molecular Signatures That Resemble Beige/Brite Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Brown adipose tissue (BAT) dissipates chemical energy and generates heat to protect animals from cold and obesity. Rodents possess two types of UCP-1 positive brown adipocytes arising from distinct developmental lineages: “classical” brown adipocytes develop during the prenatal stage whereas “beige” or “brite” cells that reside in white adipose tissue (WAT) develop during the postnatal stage in response to chronic cold or PPARγ agonists. Beige cells’ inducible characteristics make them a promising therapeutic target for obesity treatment, however, the relevance of this cell type in humans remains unknown. In the present study, we determined the gene signatures that were unique to classical brown adipocytes and to beige cells induced by a specific PPARγ agonist rosiglitazone in mice. Subsequently we applied the transcriptional data to humans and examined the molecular signatures of human BAT isolated from multiple adipose depots. To our surprise, nearly all the human BAT abundantly expressed beige cell-selective genes, but the expression of classical brown fat-selective genes were nearly undetectable. Interestingly, expression of known brown fat-selective genes such as PRDM16 was strongly correlated with that of the newly identified beige cell-selective genes, but not with that of classical brown fat-selective genes. Furthermore, histological analyses showed that a new beige cell marker, CITED1, was selectively expressed in the UCP1-positive beige cells as well as in human BAT. These data indicate that human BAT may be primary composed of beige/brite cells.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection.

          Recent advances in cDNA and oligonucleotide DNA arrays have made it possible to measure the abundance of mRNA transcripts for many genes simultaneously. The analysis of such experiments is nontrivial because of large data size and many levels of variation introduced at different stages of the experiments. The analysis is further complicated by the large differences that may exist among different probes used to interrogate the same gene. However, an attractive feature of high-density oligonucleotide arrays such as those produced by photolithography and inkjet technology is the standardization of chip manufacturing and hybridization process. As a result, probe-specific biases, although significant, are highly reproducible and predictable, and their adverse effect can be reduced by proper modeling and analysis methods. Here, we propose a statistical model for the probe-level data, and develop model-based estimates for gene expression indexes. We also present model-based methods for identifying and handling cross-hybridizing probes and contaminating array regions. Applications of these results will be presented elsewhere.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcriptional control of brown fat determination by PRDM16.

            Brown fat cells are specialized to dissipate energy and can counteract obesity; however, the transcriptional basis of their determination is largely unknown. We show here that the zinc-finger protein PRDM16 is highly enriched in brown fat cells compared to white fat cells. When expressed in white fat cell progenitors, PRDM16 activates a robust brown fat phenotype including induction of PGC-1alpha, UCP1, and type 2 deiodinase (Dio2) expression and a remarkable increase in uncoupled respiration. Transgenic expression of PRDM16 at physiological levels in white fat depots stimulates the formation of brown fat cells. Depletion of PRDM16 through shRNA expression in brown fat cells causes a near total loss of the brown characteristics. PRDM16 activates brown fat cell identity at least in part by simultaneously activating PGC-1alpha and PGC-1beta through direct protein binding. These data indicate that PRDM16 can control the determination of brown fat fate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese.

              The mitochondrial uncoupling protein (UCP) in the mitochondrial inner membrane of mammalian brown adipose tissue generates heat by uncoupling oxidative phosphorylation. This process protects against cold and regulates energy balance. Manipulation of thermogenesis could be an effective strategy against obesity. Here we determine the role of UCP in the regulation of body mass by targeted inactivation of the gene encoding it. We find that UCP-deficient mice consume less oxygen after treatment with a beta3-adrenergic-receptor agonist and that they are sensitive to cold, indicating that their thermoregulation is defective. However, this deficiency caused neither hyperphagia nor obesity in mice fed on either a standard or a high-fat diet. We propose that the loss of UCP may be compensated by UCP2, a newly discovered homologue of UCP; this gene is ubiquitously expressed and is induced in the brown fat of UCP-deficient mice.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                16 November 2012
                : 7
                : 11
                : e49452
                Affiliations
                [1 ]UCSF Diabetes Center and Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
                [2 ]Department of Radiology, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, California, United States of America
                [3 ]Department of Pathology, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, California, United States of America
                Graduate School of Medicine, the University of Tokyo, Japan
                Author notes

                Competing Interests: Regarding the funding from a commercial source (Asubio Pharma Co.), the authors declare that they have no conflicts of interest, including employment, consultancy, patents, products in development or marketed products. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: VG SK. Performed the experiments: LZS KS HO DWS ET LR HH LW ZP SK. Analyzed the data: LZS KS HO HH VG SK. Contributed reagents/materials/analysis tools: HH LW ZP VG. Wrote the paper: LZS KS HO SK.

                Article
                PONE-D-12-17813
                10.1371/journal.pone.0049452
                3500293
                23166672
                5091c228-bb23-4c7f-bb9f-d937ce4ee6f8
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 June 2012
                : 9 October 2012
                Page count
                Pages: 10
                Funding
                This work was supported by grants from the National Institutes of Health to SK (R00DK087853) and to VG (R21DK090778 and K25DK087931). This work was also supported by grants from UCSF Program for Breakthrough Biomedical Research (PBBR) and from Asubio Pharma Co. to SK. LZS is supported by CIRM Bridges fellowship (TB1-01197). HO is supported by Manpei Suzuki Diabetes Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Endocrine System
                Diabetic Endocrinology
                Endocrine Physiology
                Physiological Processes
                Energy Metabolism
                Biochemistry
                Lipids
                Fats
                Lipid Metabolism
                Metabolism
                Lipid Metabolism
                Metabolic Pathways
                Developmental Biology
                Cell Fate Determination
                Model Organisms
                Animal Models
                Mouse
                Medicine
                Anatomy and Physiology
                Endocrine System
                Diabetic Endocrinology
                Endocrine Physiology
                Physiological Processes
                Energy Metabolism
                Homeostasis
                Endocrinology
                Diabetic Endocrinology
                Diabetes Mellitus Type 2
                Endocrine Physiology
                Hormones
                Metabolic Disorders
                Nutrition
                Obesity

                Uncategorized
                Uncategorized

                Comments

                Comment on this article