15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Parameterized Post-Friedmann Framework for Modified Gravity

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We develop a parameterized post-Friedmann (PPF) framework which describes three regimes of modified gravity models that accelerate the expansion without dark energy. On large scales, the evolution of scalar metric and density perturbations must be compatible with the expansion history defined by distance measures. On intermediate scales in the linear regime, they form a scalar-tensor theory with a modified Poisson equation. On small scales in dark matter halos such as our own galaxy, modifications must be suppressed in order to satisfy stringent local tests of general relativity. We describe these regimes with three free functions and two parameters: the relationship between the two metric fluctuations, the large and intermediate scale relationships to density fluctuations and the two scales of the transitions between the regimes. We also clarify the formal equivalence of modified gravity and generalized dark energy. The PPF description of linear fluctuation in f(R) modified action and the Dvali-Gabadadze-Porrati braneworld models show excellent agreement with explicit calculations. Lacking cosmological simulations of these models, our non-linear halo-model description remains an ansatz but one that enables well-motivated consistency tests of general relativity. The required suppression of modifications within dark matter halos suggests that the linear and weakly non-linear regimes are better suited for making complementary test of general relativity than the deeply non-linear regime.

          Related collections

          Author and article information

          Journal
          08 August 2007
          2007-10-11
          Article
          10.1103/PhysRevD.76.104043
          0708.1190
          5176eed2-0c1e-4b40-8107-07e8f7428269
          History
          Custom metadata
          Phys.Rev.D76:104043,2007
          12 pages, 9 figures, additional references reflect PRD published version
          astro-ph

          Comments

          Comment on this article