10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of Rotavirus Vaccine Introduction in Children Less Than 2 Years of Age Presenting for Medical Care With Diarrhea in Rural Matlab, Bangladesh

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Following the conclusion of a human rotavirus vaccine (HRV) cluster-randomized, controlled trial (CRT) in Matlab, Bangladesh, HRV was included in Matlab’s routine immunization program. We describe the population-level impact of programmatic rotavirus vaccination in Bangladesh in children <2 years of age.

          Methods

          Interrupted time series were used to estimate the impact of HRV introduction. We used diarrheal surveillance collected between 2000 and 2014 within the 2 service delivery areas (International Centre for Diarrhoeal Disease Research, Bangladesh [icddr,b] service area [ISA] and government service area [GSA]) of the Matlab Health and Demographic Surveillance System, administered by icddr,b. Age group–specific incidence rates were calculated for both rotavirus-positive (RV+) and rotavirus-negative (RV–) diarrhea diagnoses of any severity presenting to the hospital. We used 2 models to assess the impact within each service area: Model 1 used the pre-vaccine time period in all villages (HRV– and control-only) and Model 2 combined the pre-vaccine time period and the CRT time period, using outcomes from control-only villages.

          Results

          Both models demonstrated a downward trend in RV+ diarrheal incidences in the ISA villages during 3.5 years of routine HRV use, though only Model 2 was statistically significant. Significant impacts of HRV on RV+ diarrhea incidences in GSA villages were not observed in either model. Differences in population-level impacts between the 2 delivery areas may be due to the varied rotavirus vaccine coverage and presentation rates to the hospital.

          Conclusions

          This study provides initial evidence of the population-level impact of rotavirus vaccines in children <2 years of age in Matlab, Bangladesh. Further studies are needed of the rotavirus vaccine impact after the nationwide introduction in Bangladesh.

          Abstract

          A time-series analysis suggests a downward trend in rotavirus diarrhea in children following the rotavirus vaccine’s introduction in Matlab, Bangladesh. Further research is needed to confirm the findings and to increase support for the introduction of rotavirus vaccines in Asia.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Interrupted time series regression for the evaluation of public health interventions: a tutorial

          Abstract Interrupted time series (ITS) analysis is a valuable study design for evaluating the effectiveness of population-level health interventions that have been implemented at a clearly defined point in time. It is increasingly being used to evaluate the effectiveness of interventions ranging from clinical therapy to national public health legislation. Whereas the design shares many properties of regression-based approaches in other epidemiological studies, there are a range of unique features of time series data that require additional methodological considerations. In this tutorial we use a worked example to demonstrate a robust approach to ITS analysis using segmented regression. We begin by describing the design and considering when ITS is an appropriate design choice. We then discuss the essential, yet often omitted, step of proposing the impact model a priori. Subsequently, we demonstrate the approach to statistical analysis including the main segmented regression model. Finally we describe the main methodological issues associated with ITS analysis: over-dispersion of time series data, autocorrelation, adjusting for seasonal trends and controlling for time-varying confounders, and we also outline some of the more complex design adaptations that can be used to strengthen the basic ITS design.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of human rotavirus vaccine on severe diarrhea in African infants.

            Rotavirus is the most common cause of severe gastroenteritis among young children worldwide. Data are needed to assess the efficacy of the rotavirus vaccine in African children. We conducted a randomized, placebo-controlled, multicenter trial in South Africa (3166 infants; 64.1% of the total) and Malawi (1773 infants; 35.9% of the total) to evaluate the efficacy of a live, oral rotavirus vaccine in preventing severe rotavirus gastroenteritis. Healthy infants were randomly assigned in a 1:1:1 ratio to receive two doses of vaccine (in addition to one dose of placebo) or three doses of vaccine--the pooled vaccine group--or three doses of placebo at 6, 10, and 14 weeks of age. Episodes of gastroenteritis caused by wild-type rotavirus during the first year of life were assessed through active follow-up surveillance and were graded with the use of the Vesikari scale. A total of 4939 infants were enrolled and randomly assigned to one of the three groups; 1647 infants received two doses of the vaccine, 1651 infants received three doses of the vaccine, and 1641 received placebo. Of the 4417 infants included in the per-protocol efficacy analysis, severe rotavirus gastroenteritis occurred in 4.9% of the infants in the placebo group and in 1.9% of those in the pooled vaccine group (vaccine efficacy, 61.2%; 95% confidence interval, 44.0 to 73.2). Vaccine efficacy was lower in Malawi than in South Africa (49.4% vs. 76.9%); however, the number of episodes of severe rotavirus gastroenteritis that were prevented was greater in Malawi than in South Africa (6.7 vs. 4.2 cases prevented per 100 infants vaccinated per year). Efficacy against all-cause severe gastroenteritis was 30.2%. At least one serious adverse event was reported in 9.7% of the infants in the pooled vaccine group and in 11.5% of the infants in the placebo group. Human rotavirus vaccine significantly reduced the incidence of severe rotavirus gastroenteritis among African infants during the first year of life. (ClinicalTrials.gov number, NCT00241644.) 2010 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub-Saharan Africa: a randomised, double-blind, placebo-controlled trial.

              Rotavirus gastroenteritis causes many deaths in infants in sub-Saharan Africa. Because rotavirus vaccines have proven effective in developed countries but had not been tested in developing countries, we assessed efficacy of a pentavalent rotavirus vaccine against severe disease in Ghana, Kenya, and Mali between April, 2007, and March, 2009. In our multicentre, double-blind, placebo-controlled trial, undertaken in rural areas of Ghana and Kenya and an urban area of Mali, we randomly assigned infants aged 4-12 weeks without symptoms of gastrointestinal disorders in a 1:1 ratio to receive three oral doses of pentavalent rotavirus vaccine 2 mL or placebo at around 6 weeks, 10 weeks, and 14 weeks of age. Infants with HIV infection were not excluded. Randomisation was done by computer-generated randomisation sequence in blocks of six. We obtained data for gastrointestinal symptoms from parents on presentation to health-care facilities and clinical data were obtained prospectively by clinicians. The primary endpoint was severe rotavirus gastroenteritis (Vesikari score >or=11), detected by enzyme immunoassay, arising 14 days or more after the third dose of placebo or vaccine to end of study (March 31, 2009; around 21 months of age). Analysis was per protocol; infants who received scheduled doses of vaccine or placebo without intervening laboratory-confirmed naturally occurring rotavirus disease earlier than 14 days after the third dose and had complete clinical and laboratory results were included in the analysis. This study is registered with ClinicalTrials.gov, number NCT00362648. 5468 infants were randomly assigned to receive pentavalent rotavirus vaccine (n=2733) or placebo (n=2735). 2357 infants assigned to vaccine and 2348 assigned to placebo were included in the per-protocol analysis. 79 cases of severe rotavirus gastroenteritis were reported in 2610.6 person-years in the vaccine group, compared with 129 cases in 2585.9 person-years in the placebo group, resulting in a vaccine efficacy against severe rotavirus gastroenteritis of 39.3% (95% CI 19.1-54.7, p=0.0003 for efficacy >0%). Median follow-up in both groups was 527 days starting 14 days after the third dose of vaccine or placebo was given. 42 (1.5%) of 2723 infants assigned to receive vaccine and 45 (1.7%) of 2724 infants assigned to receive placebo had a serious adverse event within 14 days of any dose. The most frequent serious adverse event was gastroenteritis (vaccine 17 [0.6%]; placebo 17 [0.6%]). Pentavalent rotavirus vaccine is effective against severe rotavirus gastroenteritis in the first 2 years of life in African countries with high mortality in infants younger than 5 years. We support WHO's recommendation for adoption of rotavirus vaccine into national expanded programmes on immunisation in Africa. PATH (GAVI Alliance grant) and Merck. Copyright 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Clin Infect Dis
                Clin. Infect. Dis
                cid
                Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America
                Oxford University Press (US )
                1058-4838
                1537-6591
                15 December 2019
                12 February 2019
                12 February 2019
                : 69
                : 12
                : 2059-2070
                Affiliations
                [1 ] Department of Epidemiology, School of Public Health, University of Washington , Seattle
                [2 ] Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center , Seattle
                [3 ] International Centre for Diarrhoeal Disease Research , Bangladesh, Dhaka
                [4 ] Department of Biostatistics, School of Public Health, University of Washington , Seattle
                [5 ] Center for Inference and Dynamics of Infectious Diseases , Seattle
                [6 ] Center for Vaccine Development, University of Maryland School of Medicine , Baltimore
                [7 ] Center for Vaccine Innovation and Access , PATH, Seattle, Washington
                Author notes
                Correspondence: L. M. Schwartz, Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, M2-B708, Seattle, WA 98109 ( laurenms@ 123456uw.edu ).
                Article
                ciz133
                10.1093/cid/ciz133
                6880338
                30753368
                5185cddc-27bf-461c-9452-fe6c85bdba62
                © The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 September 2018
                : 07 February 2019
                : 17 April 2019
                Page count
                Pages: 12
                Funding
                Funded by: Bill and Melinda Gates Foundation 10.13039/100000865
                Award ID: OPP1097672
                Funded by: National Institutes of Health 10.13039/100000002
                Award ID: MERIT R37 AI032042
                Categories
                Articles and Commentaries

                Infectious disease & Microbiology
                rotavirus vaccine,impact,time-series
                Infectious disease & Microbiology
                rotavirus vaccine, impact, time-series

                Comments

                Comment on this article