30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Are protozoan metacaspases potential parasite killers?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mechanisms concerning life or death decisions in protozoan parasites are still imperfectly understood. Comparison with higher eukaryotes has led to the hypothesis that caspase-like enzymes could be involved in death pathways. This hypothesis was reinforced by the description of caspase-related sequences in the genome of several parasites, including Plasmodium, Trypanosoma and Leishmania. Although several teams are working to decipher the exact role of metacaspases in protozoan parasites, partial, conflicting or negative results have been obtained with respect to the relationship between protozoan metacaspases and cell death. The aim of this paper is to review current knowledge of protozoan parasite metacaspases within a drug targeting perspective.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Arabidopsis type I metacaspases control cell death.

          Metacaspases are distant relatives of animal caspases found in protozoa, fungi, and plants. Limited experimental data exist defining their function(s), despite their discovery by homology modeling a decade ago. We demonstrated that two type I metacaspases, AtMC1 and AtMC2, antagonistically control programmed cell death in Arabidopsis. AtMC1 is a positive regulator of cell death and requires conserved caspase-like putative catalytic residues for its function. AtMC2 negatively regulates cell death. This function is independent of the putative catalytic residues. Manipulation of the Arabidopsis type I metacaspase regulatory module can nearly eliminate the hypersensitive cell death response (HR) activated by plant intracellular immune receptors. This does not lead to enhanced pathogen proliferation, decoupling HR from restriction of pathogen growth.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A caspase-related protease regulates apoptosis in yeast.

            Yeast can undergo cell death accompanied by cellular markers of apoptosis. However, orthologs of classical mammalian apoptosis regulators appeared to be missing from the yeast genome, challenging a common mechanism of yeast and mammalian apoptosis. Here we investigate Yor197w, a yeast protein with structural homology to mammalian caspases, and demonstrate caspase-like processing of the protein. Hydrogen peroxide treatment induces apoptosis together with a caspase-like enzymatic activity in yeast. This response is completely abrogated after disruption and strongly stimulated after overexpression of Yor197w. Yor197w also mediates the death process within chronologically aged cultures, pointing to a physiological role in elimination of overaged cells. We conclude that Yor197w indeed functions as a bona fide caspase in yeast and propose the name Yeast Caspase-1 (YCA1, gene YCA1).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Apoptosis and autophagy: Regulation of caspase-9 by phosphorylation.

              Cell death by the process of apoptosis plays important roles in development, tissue homeostasis, diseases and drug responses. The cysteine aspartyl protease caspase-9 plays a central role in the mitochondrial or intrinsic apoptotic pathway that is engaged in response to many apoptotic stimuli. Caspase-9 is activated in a large multimeric complex, the apoptosome, which is formed with apoptotic peptidase activating factor 1 (Apaf-1) in response to the release of cytochrome c from mitochondria. Once activated, caspase-9 cleaves and activates the effector caspases 3 and 7 to bring about apoptosis. This pathway is tightly regulated at multiple steps, including apoptosome formation and caspase-9 activation. Recent work has shown that caspase-9 is the direct target for regulatory phosphorylation by multiple protein kinases activated in response to extracellular growth/survival factors, osmotic stress or during mitosis. Here, we review these advances and discuss the possible roles of caspase-9 phosphorylation in the regulation of apoptosis during development and in pathological states, including cancer.
                Bookmark

                Author and article information

                Journal
                Parasit Vectors
                Parasites & Vectors
                BioMed Central
                1756-3305
                2011
                28 February 2011
                : 4
                : 26
                Affiliations
                [1 ]Malaria Research Unit, University Lyon 1, 8 Avenue Rockefeller, 69373 Lyon cedex 08, France
                [2 ]Department of Biochemistry, University of Lausanne, 155 Chemin des Boveresses, 1066 Epalinges, Switzerland
                Article
                1756-3305-4-26
                10.1186/1756-3305-4-26
                3058108
                21356053
                5215652c-e797-45da-89d9-c04edb35235e
                Copyright ©2011 Meslin et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 October 2010
                : 28 February 2011
                Categories
                Review

                Parasitology
                Parasitology

                Comments

                Comment on this article