9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rosiglitazone promotes ENaC-mediated alveolar fluid clearance in acute lung injury through the PPARγ/SGK1 signaling pathway

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Pulmonary edema is one of the pathological characteristics of acute respiratory distress syndrome (ARDS). The epithelial sodium channel (ENaC) is thought to be the rate-limiting factor for alveolar fluid clearance (AFC) during pulmonary edema. The peroxisome proliferator-activated receptor γ (PPARγ) agonist rosiglitazone was shown to stimulate ENaC-mediated salt absorption in the kidney. However, its role in the lung remains unclear. Here, we investigated the role of the PPARγ agonist in the lung to find out whether it can regulate AFC during acute lung injury (ALI). We also attempted to elucidate the mechanism for this.

          Methods

          Our ALI model was established through intratracheal instillation of lipopolysaccharide (LPS) in C57BL/6 J mice. The mice were randomly divided into 4 groups of 10. The control group underwent a sham operation and received an equal quantity of saline. The three experimental groups underwent intratracheal instillation of 5 mg/kg LPS, followed by intraperitoneal injection of 4 mg/kg rosiglitazone, 4 mg/kg rosiglitazone plus 1 mg/kg GW9662, or only equal quantity of saline. The histological morphology of the lung, the levels of TNF-α and IL-1β in the bronchoalveolar lavage fluid (BALF), the level of AFC, and the expressions of αENaC and serum and glucocorticoid-induced kinase-1 (SGK1) were determined. Type 2 alveolar (AT II) cells were incubated with rosiglitazone (15 μM) with or without GW9662 (10 μM). The expressions of αENaC and SGK1 were determined 24 h later.

          Results

          A mouse model of ALI was successfully established. Rosiglitazone significantly ameliorated the lung injury, decreasing the TNF-α and IL-1β levels in the BALF, enhancing AFC, and promoting the expressions of αENaC and SGK1 in ALI mice, which were abolished by the specific PPARγ blocker GW9662. In vitro, rosiglitazone increased the expressions of αENaC and SGK1. This increase was prevented by GW9662.

          Conclusions

          Rosiglitazone ameliorated the lung injury and promoted ENaC-mediated AFC via a PPARγ/SGK1-dependent signaling pathway, alleviating pulmonary edema in a mouse model of ALI.

          Electronic supplementary material

          The online version of this article (10.1186/s11658-019-0154-0) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a).

          Serum- and glucocorticoid-inducible kinases (SGKs) form a novel family of serine/threonine kinases that are activated in response to a variety of extracellular stimuli. SGKs are related to Akt (also called PKB), a serine/threonine kinase that plays a crucial role in promoting cell survival. Like Akt, SGKs are activated by the phosphoinositide-3 kinase (PI3K) and translocate to the nucleus upon growth factor stimulation. However the physiological substrates and cellular functions of SGKs remained to be identified. We hypothesized that SGKs regulate cellular functions in concert with Akt by phosphorylating common targets within the nucleus. The best-characterized nuclear substrates of Akt are transcription factors of the Forkhead family. Akt phosphorylates Forkhead transcription factors such as FKHRL1, leading to FKHRL1's exit from the nucleus and the consequent shutoff of FKHRL1 target genes. We show here that SGK1, like Akt, promotes cell survival and that it does so in part by phosphorylating and inactivating FKHRL1. However, SGK and Akt display differences with respect to the efficacy with which they phosphorylate the three regulatory sites on FKHRL1. While both kinases can phosphorylate Thr-32, SGK displays a marked preference for Ser-315 whereas Akt favors Ser-253. These findings suggest that SGK and Akt may coordinately regulate the function of FKHRL1 by phosphorylating this transcription factor at distinct sites. The efficient phosphorylation of these three sites on FKHRL1 by SGK and Akt appears to be critical to the ability of growth factors to suppress FKHRL1-dependent transcription, thereby preventing FKHRL1 from inducing cell cycle arrest and apoptosis. These findings indicate that SGK acts in concert with Akt to propagate the effects of PI3K activation within the nucleus and to mediate the biological outputs of PI3K signaling, including cell survival and cell cycle progression.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Thiazolidinediones expand body fluid volume through PPARgamma stimulation of ENaC-mediated renal salt absorption.

            Thiazolidinediones (TZDs) are widely used to treat type 2 diabetes mellitus; however, their use is complicated by systemic fluid retention. Along the nephron, the pharmacological target of TZDs, peroxisome proliferator-activated receptor-gamma (PPARgamma, encoded by Pparg), is most abundant in the collecting duct. Here we show that mice treated with TZDs experience early weight gain from increased total body water. Weight gain was blocked by the collecting duct-specific diuretic amiloride and was also prevented by deletion of Pparg from the collecting duct, using Pparg (flox/flox) mice. Deletion of collecting duct Pparg decreased renal Na(+) avidity and increased plasma aldosterone. Treating cultured collecting ducts with TZDs increased amiloride-sensitive Na(+) absorption and Scnn1g mRNA (encoding the epithelial Na(+) channel ENaCgamma) expression through a PPARgamma-dependent pathway. These studies identify Scnn1g as a PPARgamma target gene in the collecting duct. Activation of this pathway mediates fluid retention associated with TZDs, and suggests amiloride might provide a specific therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thiazolidinediones and PPARγ agonists: time for a reassessment.

              Thiazolidinediones (TZDs) are anti-diabetic drugs that act as insulin sensitizers and are used in the management of type 2 diabetes mellitus. TZDs, which are ligands for the transcription factor peroxisome proliferator-activated receptor PPARγ, have a wide spectrum of action, including modulation of glucose and lipid homeostasis, inflammation, atherosclerosis, bone remodeling and cell proliferation. Randomized clinical trials have demonstrated the efficacy and durability of the anti-hyperglycemic action of TZDs, and have suggested that the TZD pioglitazone also exerts cardioprotective action. However, the clinical use of TZDs is limited by the occurrence of several adverse events, including body-weight gain, congestive heart failure, bone fractures and possibly bladder cancer. Therefore, there is an unmet need for the development of new safer PPARγ-modulating drugs. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                514342948@qq.com
                submitmail@126.com
                Journal
                Cell Mol Biol Lett
                Cell. Mol. Biol. Lett
                Cellular & Molecular Biology Letters
                BioMed Central (London )
                1425-8153
                1689-1392
                28 May 2019
                28 May 2019
                2019
                : 24
                : 35
                Affiliations
                GRID grid.412461.4, Department of Respiratory Medicine, , The Second Affiliated Hospital of Chongqing Medical University, ; 76 Linjiang Road, Yuzhong District, Chongqing, 400010 China
                Article
                154
                10.1186/s11658-019-0154-0
                6540532
                31160894
                52602fdf-e58b-4f0d-91d3-93b761c59fb6
                © The Author(s) 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 8 November 2018
                : 29 April 2019
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 81600060
                Award Recipient :
                Categories
                Short Report
                Custom metadata
                © The Author(s) 2019

                acute lung injury,alveolar epithelial sodium channel,alveolar fluid clearance,peroxisome proliferator-activated receptor γ,serum and glucocorticoid induced kinase-1

                Comments

                Comment on this article