9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Osteoporosis in Skin Diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteoporosis (OP) is defined as a generalized skeletal disease characterized by low bone mass and an alteration of the microarchitecture that lead to an increase in bone fragility and, therefore, an increased risk of fractures. It must be considered today as a true public health problem and the most widespread metabolic bone disease that affects more than 200 million people worldwide. Under physiological conditions, there is a balance between bone formation and bone resorption necessary for skeletal homeostasis. In pathological situations, this balance is altered in favor of osteoclast (OC)-mediated bone resorption. During chronic inflammation, the balance between bone formation and bone resorption may be considerably affected, contributing to a net prevalence of osteoclastogenesis. Skin diseases are the fourth cause of human disease in the world, affecting approximately one third of the world’s population with a prevalence in elderly men. Inflammation and the various associated cytokine patterns are the basis of both osteoporosis and most skin pathologies. Moreover, dermatological patients also undergo local or systemic treatments with glucocorticoids and immunosuppressants that could increase the risk of osteoporosis. Therefore, particular attention should be paid to bone health in these patients. The purpose of the present review is to take stock of the knowledge in this still quite unexplored field, despite the frequency of such conditions in clinical practice.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          The EAACI/GA²LEN/EDF/WAO Guideline for the Definition, Classification, Diagnosis and Management of Urticaria. The 2017 Revision and Update

          This evidence- and consensus-based guideline was developed following the methods recommended by Cochrane and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) working group. The conference was held on 1 December 2016. It is a joint initiative of the Dermatology Section of the European Academy of Allergology and Clinical Immunology (EAACI), the EU-founded network of excellence, the Global Allergy and Asthma European Network (GA²LEN), the European Dermatology Forum (EDF) and the World Allergy Organization (WAO) with the participation of 48 delegates of 42 national and international societies. This guideline was acknowledged and accepted by the European Union of Medical Specialists (UEMS). Urticaria is a frequent, mast cell-driven disease, presenting with wheals, angioedema, or both. The lifetime prevalence for acute urticaria is approximately 20%. Chronic spontaneous urticaria and other chronic forms of urticaria are disabling, impair quality of life and affect performance at work and school. This guideline covers the definition and classification of urticaria, taking into account the recent progress in identifying its causes, eliciting factors and pathomechanisms. In addition, it outlines evidence-based diagnostic and therapeutic approaches for the different subtypes of urticaria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epidemiology, etiology, and diagnosis of osteoporosis.

            Nancy Lane (2006)
            Osteoporosis, a major public health problem, is becoming increasingly prevalent with the aging of the world population. Osteoporosis is a skeletal disorder characterized by compromised bone strength, which predisposes the individual to an increased risk of fractures of the hip, spine, and other skeletal sites. The clinical consequences and economic burden of this disease call for measures to assess individuals who are at high risk to allow for appropriate intervention. Many risk factors are associated with osteoporotic fracture, including low peak bone mass, hormonal factors, the use of certain drugs (eg, glucocorticoids), cigarette smoking, low physical activity, low intake of calcium and vitamin D, race, small body size, and a personal or a family history of fracture. All of these factors should be taken into account when assessing the risk of fracture and determining whether further treatment is required. Because osteoporotic fracture risk is higher in older women than in older men, all postmenopausal women should be evaluated for signs of osteoporosis during routine physical examinations. Radiologic laboratory assessments of bone mineral density generally should be reserved for patients at highest risk, including all women over the age of 65, younger postmenopausal women with risk factors, and all postmenopausal women with a history of fractures. The evaluation of biochemical markers of bone turnover has been useful in clinical research. However, the predictive factor of these measurements is not defined clearly, and these findings should not be used as a replacement for bone density testing. Together, clinical assessment of osteoporotic risk factors and objective measures of bone mineral density can help to identify patients who will benefit from intervention and, thus, can potentially reduce the morbidity and mortality associated with osteoporosis-associated fractures in this population.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vitamin D and cancer: a review of molecular mechanisms.

              The population-based association between low vitamin D status and increased cancer risk can be inconsistent, but it is now generally accepted. These relationships link low serum 25OHD (25-hydroxyvitamin D) levels to cancer, whereas cell-based studies show that the metabolite 1,25(OH)2D (1,25-dihydroxyvitamin D) is a biologically active metabolite that works through vitamin D receptor to regulate gene transcription. In the present review we discuss the literature relevant to the molecular events that may account for the beneficial impact of vitamin D on cancer prevention or treatment. These data show that although vitamin D-induced growth arrest and apoptosis of tumour cells or their non-neoplastic progenitors are plausible mechanisms, other chemoprotective mechanisms are also worthy of consideration. These alternative mechanisms include enhancing DNA repair, antioxidant protection and immunomodulation. In addition, other cell targets, such as the stromal cells, endothelial cells and cells of the immune system, may be regulated by 1,25(OH)2D and contribute to vitamin D-mediated cancer prevention.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                03 July 2020
                July 2020
                : 21
                : 13
                : 4749
                Affiliations
                [1 ]Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; maddalena.sirufo@ 123456gmail.com (M.M.S.); fra722@ 123456hotmail.it (F.D.P.); enricamaria.bassino@ 123456gmail.com (E.M.B.); lia.ginaldi@ 123456cc.univaq.it (L.G.)
                [2 ]Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
                Author notes
                [* ]Correspondence: demartinis@ 123456cc.univaq.it ; Tel.: +39-0861-429548; Fax: +39-0861-211395
                Author information
                https://orcid.org/0000-0003-4253-1312
                Article
                ijms-21-04749
                10.3390/ijms21134749
                7370296
                32635380
                52c4ba8c-4ae3-4689-96c8-6294a93f64b1
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 01 June 2020
                : 01 July 2020
                Categories
                Review

                Molecular biology
                osteoporosis,dermatology,skin,skin diseases,bone,skeletal health,psoriasis,eczema,atopic dermatitis,urticaria,pemphigus,vitiligo

                Comments

                Comment on this article