31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Oxysterol-binding protein (OSBP) is required for the perinuclear localization of intra-Golgi v-SNAREs

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OSBP regulates the Golgi cholesterol level. This study demonstrates that OSBP and cholesterol are essential for localization of Golgi v-SNAREs. Knockdown of ArfGAP1 restores v-SNARE localization in OSBP-depleted cells, suggesting that OSBP-regulated cholesterol ensures proper COP-I vesicle transport.

          Abstract

          Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) have been implicated in the distribution of sterols among intracellular organelles. OSBP regulates the Golgi cholesterol level, but how it relates to Golgi function is elusive. Here we report that OSBP is essential for the localization of intra-Golgi soluble vesicle N-ethylmaleimide-sensitive fusion attachment protein receptors (v-SNAREs). Depletion of OSBP by small interfering RNA causes mislocalization of intra-Golgi v-SNAREs GS28 and GS15 throughout the cytoplasm without affecting the perinuclear localization of Golgi target-SNARE syntaxin5 and reduces the abundance of a Golgi enzyme, mannosidase II (Man II). GS28 mislocalization and Man II reduction are also induced by cellular cholesterol depletion. Three domains of OSBP—an endoplasmic reticulum–targeting domain, a Golgi-targeting domain, and a sterol-binding domain—are all required for Golgi localization of GS28. Finally, GS28 mislocalization and Man II reduction in OSBP-depleted cells are largely restored by depletion of ArfGAP1, a regulator of the budding of coat protein complex (COP)-I vesicles. From these results, we postulate that Golgi cholesterol level, which is controlled by OSBP, is essential for Golgi localization of intra-Golgi v-SNAREs by ensuring proper COP-I vesicle transport.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Article: not found

          A rapid method of total lipid extraction and purification.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Assembly of asparagine-linked oligosaccharides.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Revitalizing membrane rafts: new tools and insights.

              Ten years ago, we wrote a Review on lipid rafts and signalling in the launch issue of Nature Reviews Molecular Cell Biology. At the time, this field was suffering from ambiguous methodology and imprecise nomenclature. Now, new techniques are deepening our insight into the dynamics of membrane organization. Here, we discuss how the field has matured and present an evolving model in which membranes are occupied by fluctuating nanoscale assemblies of sphingolipids, cholesterol and proteins that can be stabilized into platforms that are important in signalling, viral infection and membrane trafficking.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                Mol. Biol. Cell
                molbiolcell
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                15 November 2013
                : 24
                : 22
                : 3534-3544
                Affiliations
                [1] aDepartment of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
                [2] cPathological Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
                [3] bDepartment of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205
                University of Queensland
                Author notes
                1Address correspondence to: Hiroyuki Arai ( harai@ 123456mol.f.u-tokyo.ac.jp ).
                Article
                E13-05-0250
                10.1091/mbc.E13-05-0250
                3826991
                24048449
                537f8a53-f369-44ba-868b-1e53f0eeb7ac
                © 2013 Nishimura et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology.

                History
                : 13 May 2013
                : 22 August 2013
                : 10 September 2013
                Categories
                Articles
                Membrane Trafficking

                Molecular biology
                Molecular biology

                Comments

                Comment on this article