36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Amplification Target ADRM1: Role as an Oncogene and Therapeutic Target for Ovarian Cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Approximately 25,000 ovarian cancers are diagnosed in the U.S. annually, and 75% are in the advanced stage and largely incurable. There is critical need for early detection tools and novel treatments. Proteasomal ubiquitin receptor ADRM1 is a protein that is encoded by the ADRM1 gene. Recently, we showed that among 20q13-amplified genes in ovarian cancer, ADRM1 overexpression was the most highly correlated with amplification and was significantly upregulated with respect to stage, recurrence, and metastasis. Its overexpression correlated significantly with shorter time to recurrence and overall survival. Array-CGH and microarray expression of ovarian cancer cell lines provided evidence consistent with primary tumor data that ADRM1 is a 20q13 amplification target. Herein, we confirm the ADRM1 amplicon in a second ovarian cancer cohort and define a minimally amplified region of 262 KB encompassing seven genes. Additionally, using RNAi knock-down of ADRM1 in naturally amplified cell line OAW42 and overexpression of ADRM1 via transfection in ES2, we show that (1) ADRM1 overexpression increases proliferation, migration, and growth in soft agar, and (2) knock-down of ADRM1 results in apoptosis. Proteomic analysis of cells with ADRM1 knock-down reveals dysregulation of proteins including CDK-activating kinase assembly factor MAT1. Taken together, the results indicate that amplified ADRM1 is involved in cell proliferation, migration and survival in ovarian cancer cells, supporting a role as an oncogene and novel therapeutic target for ovarian cancer.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Identification and validation of commonly overexpressed genes in solid tumors by comparison of microarray data.

          Cancers originating from epithelial cells are the most common malignancies. No common expression profile of solid tumors compared to normal tissues has been described so far. Therefore we were interested if genes differentially expressed in the majority of carcinomas could be identified using bioinformatic methods. Complete data sets were downloaded for carcinomas of the prostate, breast, lung, ovary, colon, pancreas, stomach, bladder, liver, and kidney, and were subjected to an expression analysis using SAM. In each experiment, a gene was scored as differentially expressed if the q value was below 25%. Probe identifiers were unified by comparing the respective probe sequences to the Unigene build 155 using BlastN. To obtain differentially expressed genes within the set of analyzed carcinomas, the number of experiments in which differential expression was observed was counted. Differential expression was assigned to genes if they were differentially expressed in at least eight experiments of tumors from different origin. The identified candidate genes ADRM1, EBNA1BP2, FDPS, FOXM1, H2AFX, HDAC3, IRAK1, and YY1 were subjected to further validation. Using this comparative approach, 100 genes were identified as upregulated and 21 genes as downregulated in the carcinomas.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes.

            The 26S proteasome is a multisubunit protease responsible for regulated proteolysis in eukaryotic cells. It is composed of one catalytic 20S proteasome and two 19S regulatory particles attached on both ends of 20S proteasomes. Here, we describe the identification of Adrm1 as a novel proteasome interacting protein in mammalian cells. Although the overall sequence of Adrm1 has weak homology with the yeast Rpn13, the amino- and carboxyl-terminal regions exhibit significant homology. Therefore, we designated it as hRpn13. hRpn13 interacts with a base subunit Rpn2 via its amino-terminus. The majority of 26S proteasomes contain hRpn13, but a portion of them does not, indicating that hRpn13 is not an integral subunit. Intriguingly, we found that hRpn13 recruits UCH37, a deubiquitinating enzyme known to associate with 26 proteasomes. The carboxyl-terminal regions containing KEKE motifs of both hRpn13 and UCH37 are involved in their physical interaction. Knockdown of hRpn13 caused no obvious proteolytic defect but loss of UCH37 proteins and decrease in deubiquitinating activity of 26S proteasomes. Our results indicate that hRpn13 is essential for the activity of UCH37.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37.

              The 26S proteasome catalyzes the degradation of most proteins in mammalian cells. To better define its composition and associated regulatory proteins, we developed affinity methods to rapidly purify 26S proteasomes from mammalian cells. By this approach, we discovered a novel 46-kDa (407 residues) subunit of its 19S regulatory complex (previously termed ADRM1 or GP110). As its N-terminal half can be incorporated into the 26S proteasome and is homologous to Rpn13, a 156-residue subunit of the 19S complex in budding yeast, we renamed it human Rpn13 (hRpn13). The C-terminal half of hRpn13 binds directly to the proteasome-associated deubiquitinating enzyme, UCH37, and enhances its isopeptidase activity. Knockdown of hRpn13 in 293T cells increases the cellular levels of ubiquitin conjugates and decreases the degradation of short-lived proteins. Surprisingly, an overproduction of hRpn13 also reduced their degradation. Furthermore, transfection of the C-terminal half of hRpn13 slows proteolysis and induces cell death, probably by acting as a dominant-negative form. Thus in human 26S proteasomes, hRpn13 appears to be important for the binding of UCH37 to the 19S complex and for efficient proteolysis.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                Molecular Diversity Preservation International (MDPI)
                1422-0067
                2013
                01 February 2013
                : 14
                : 2
                : 3094-3109
                Affiliations
                [1 ]Division of Hematology-Oncology, Department of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA; E-Mails: landers@ 123456ucla.edu (L.A.); evoneuw@ 123456mednet.ucla.edu (E.M.E.); okalous@ 123456hotmail.com (O.K.); gkonecny@ 123456mednet.ucla.edu (G.E.K.); rfinn@ 123456mednet.ucla.edu (R.S.F.); dslamon@ 123456mednet.ucla.edu (D.J.S.)
                [2 ]Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; E-Mails: navliyakulov@ 123456mednet.ucla.edu (N.K.A.); mhaykinson@ 123456mednet.ucla.edu (M.J.H.)
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: mfejzo@ 123456mednet.ucla.edu ; Tel.: +1-310-206-1408; Fax: +1-310-825-3761.
                Article
                ijms-14-03094
                10.3390/ijms14023094
                3588033
                23377018
                540e96bc-7945-4377-bf4c-f32176b90e71
                © 2013 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

                This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 16 January 2013
                : 25 January 2013
                : 28 January 2013
                Categories
                Article

                Molecular biology
                adrm1,oncogene,ovarian cancer
                Molecular biology
                adrm1, oncogene, ovarian cancer

                Comments

                Comment on this article