25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ketamine and rapid-acting antidepressants: a new era in the battle against depression and suicide

      review-article
      a , 1
      F1000Research
      F1000 Research Limited
      Ketamine, mTOR, antidepressants, depression, suicide

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Therapeutic medications for the treatment of depression have serious limitations, particularly delayed onset and low rates of efficacy. However, the discovery that a single subanesthetic dose of ketamine, a glutamate NMDA receptor channel blocker, can produce a rapid (within hours) antidepressant response that is sustained (about 1 week), even in patients considered treatment-resistant, has invigorated the field. In addition to these remarkable actions, ketamine has proven effective for the treatment of suicidal ideation. Efforts are under way to develop ketamine-like drugs with fewer side effects as well as agents that act at other sites within the glutamate neurotransmitter system. This includes ketamine metabolites and stereoisomers, drugs that act as NMDA allosteric modulators or that block mGluR2/3 autoreceptors. In addition, targets that enhance glutamate neurotransmission or synaptic function (or both), which are essential for the rapid and sustained antidepressant actions of ketamine in rodent models, are being investigated; examples are the muscarinic cholinergic antagonist scopolamine and activators of mechanistic target of rapamycin complex 1 (mTORC1) signaling, which is required for the actions of ketamine. The discovery of ketamine and its unique mechanisms heralds a new era with tremendous promise for the development of novel, rapid, and efficacious antidepressant medications.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          NMDA Receptor Blockade at Rest Triggers Rapid Behavioural Antidepressant Responses

          Clinical studies consistently demonstrate that a single sub-psychomimetic dose of ketamine, an ionotropic glutamatergic n-methyl-d-aspartate receptor (NMDAR) antagonist, produces fast-acting antidepressant responses in patients suffering from major depressive disorder (MDD), although the underlying mechanism is unclear 1-3 . Depressed patients report alleviation of MDD symptoms within two hours of a single low-dose intravenous infusion of ketamine with effects lasting up to two weeks 1-3 , unlike traditional antidepressants (i.e. serotonin reuptake inhibitors), which take weeks to reach efficacy. This delay is a major drawback to current MDD therapies, leaving a need for faster acting antidepressants particularly for suicide-risk patients 3 . Ketamine's ability to produce rapidly acting, long-lasting antidepressant responses in depressed patients provides a unique opportunity to investigate underlying cellular mechanisms. We show that ketamine and other NMDAR antagonists produce fast-acting behavioural antidepressant-like effects in mouse models that depend on rapid synthesis of brain-derived neurotrophic factor (BDNF). We find that ketamine-mediated NMDAR blockade at rest deactivates eukaryotic elongation factor 2 (eEF2) kinase (also called CaMKIII) resulting in reduced eEF2 phosphorylation and desuppression of BDNF translation. Furthermore, we find inhibitors of eEF2 kinase induce fast-acting behavioural antidepressant-like effects. Our findings suggest that protein synthesis regulation by spontaneous neurotransmission may serve as a viable therapeutic target for fast-acting antidepressant development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NMDAR inhibition-independent antidepressant actions of ketamine metabolites

            Major depressive disorder afflicts ~16 percent of the world population at some point in their lives. Despite a number of available monoaminergic-based antidepressants, most patients require many weeks, if not months, to respond to these treatments, and many patients never attain sustained remission of their symptoms. The non-competitive glutamatergic N-methyl-D-aspartate receptor (NMDAR) antagonist, (R,S)-ketamine (ketamine), exerts rapid and sustained antidepressant effects following a single dose in depressed patients. Here we show that the metabolism of ketamine to (2S,6S;2R,6R)-hydroxynorketamine (HNK) is essential for its antidepressant effects, and that the (2R,6R)-HNK enantiomer exerts behavioural, electroencephalographic, electrophysiological and cellular antidepressant actions in vivo. Notably, we demonstrate that these antidepressant actions are NMDAR inhibition-independent but they involve early and sustained α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor activation. We also establish that (2R,6R)-HNK lacks ketamine-related side-effects. Our results indicate a novel mechanism underlying ketamine’s unique antidepressant properties, which involves the required activity of a distinct metabolite and is independent of NMDAR inhibition. These findings have relevance for the development of next generation, rapid-acting antidepressants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants.

              Depression is a common, devastating illness. Current pharmacotherapies help many patients, but high rates of a partial response or no response, and the delayed onset of the effects of antidepressant therapies, leave many patients inadequately treated. However, new insights into the neurobiology of stress and human mood disorders have shed light on mechanisms underlying the vulnerability of individuals to depression and have pointed to novel antidepressants. Environmental events and other risk factors contribute to depression through converging molecular and cellular mechanisms that disrupt neuronal function and morphology, resulting in dysfunction of the circuitry that is essential for mood regulation and cognitive function. Although current antidepressants, such as serotonin-reuptake inhibitors, produce subtle changes that take effect in weeks or months, it has recently been shown that treatment with new agents results in an improvement in mood ratings within hours of dosing patients who are resistant to typical antidepressants. Within a similar time scale, these new agents have also been shown to reverse the synaptic deficits caused by stress.
                Bookmark

                Author and article information

                Contributors
                Role: Formal Analysis
                Journal
                F1000Res
                F1000Res
                F1000Research
                F1000Research
                F1000 Research Limited (London, UK )
                2046-1402
                24 May 2018
                2018
                : 7
                : F1000 Faculty Rev-659
                Affiliations
                [1 ]Department of Psychiatry, Laboratory of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06508, USA
                Author notes

                Competing interests: The author has received consulting fees from Taisho, Johnson & Johnson, and Naurex and grant support from Taisho, Johnson & Johnson, Naurex, Allergan, Navitor, Lundbeck, Relmada, and Eli Lilly and Company.

                Author information
                https://orcid.org/0000-0001-8690-8439
                Article
                10.12688/f1000research.14344.1
                5968361
                29899972
                5436522a-752d-4e7f-bdc9-0e597a3b69c8
                Copyright: © 2018 Duman RS

                This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 May 2018
                Funding
                Funded by: State of Connecticut
                Funded by: Lilly
                Funded by: Lundbeck
                Funded by: Relamada
                Funded by: Allergan
                Funded by: Taisho Toyama Pharmaceutical Company
                Funded by: Navitor
                Funded by: National Institute of Mental Health
                Award ID: MH045481andMH093897
                Funded by: Johnson & Johnson
                Funded by: Naurex
                This research was supported by National Institute of Mental Health grants MH045481 and MH093897 and the State of Connecticut. The funders had no role in decision to publish, or preparation of the manuscript.
                Categories
                Review
                Articles

                ketamine,mtor,antidepressants,depression,suicide
                ketamine, mtor, antidepressants, depression, suicide

                Comments

                Comment on this article