1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      ZDHHC18 negatively regulates cGAS‐mediated innate immunity through palmitoylation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          SWISS-MODEL: homology modelling of protein structures and complexes

          Abstract Homology modelling has matured into an important technique in structural biology, significantly contributing to narrowing the gap between known protein sequences and experimentally determined structures. Fully automated workflows and servers simplify and streamline the homology modelling process, also allowing users without a specific computational expertise to generate reliable protein models and have easy access to modelling results, their visualization and interpretation. Here, we present an update to the SWISS-MODEL server, which pioneered the field of automated modelling 25 years ago and been continuously further developed. Recently, its functionality has been extended to the modelling of homo- and heteromeric complexes. Starting from the amino acid sequences of the interacting proteins, both the stoichiometry and the overall structure of the complex are inferred by homology modelling. Other major improvements include the implementation of a new modelling engine, ProMod3 and the introduction a new local model quality estimation method, QMEANDisCo. SWISS-MODEL is freely available at https://swissmodel.expasy.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB.

            Molecular mechanics is powerful for its speed in atomistic simulations, but an accurate force field is required. The Amber ff99SB force field improved protein secondary structure balance and dynamics from earlier force fields like ff99, but weaknesses in side chain rotamer and backbone secondary structure preferences have been identified. Here, we performed a complete refit of all amino acid side chain dihedral parameters, which had been carried over from ff94. The training set of conformations included multidimensional dihedral scans designed to improve transferability of the parameters. Improvement in all amino acids was obtained as compared to ff99SB. Parameters were also generated for alternate protonation states of ionizable side chains. Average errors in relative energies of pairs of conformations were under 1.0 kcal/mol as compared to QM, reduced 35% from ff99SB. We also took the opportunity to make empirical adjustments to the protein backbone dihedral parameters as compared to ff99SB. Multiple small adjustments of φ and ψ parameters were tested against NMR scalar coupling data and secondary structure content for short peptides. The best results were obtained from a physically motivated adjustment to the φ rotational profile that compensates for lack of ff99SB QM training data in the β-ppII transition region. Together, these backbone and side chain modifications (hereafter called ff14SB) not only better reproduced their benchmarks, but also improved secondary structure content in small peptides and reproduction of NMR χ1 scalar coupling measurements for proteins in solution. We also discuss the Amber ff12SB parameter set, a preliminary version of ff14SB that includes most of its improvements.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway.

              The presence of DNA in the cytoplasm of mammalian cells is a danger signal that triggers host immune responses such as the production of type I interferons. Cytosolic DNA induces interferons through the production of cyclic guanosine monophosphate-adenosine monophosphate (cyclic GMP-AMP, or cGAMP), which binds to and activates the adaptor protein STING. Through biochemical fractionation and quantitative mass spectrometry, we identified a cGAMP synthase (cGAS), which belongs to the nucleotidyltransferase family. Overexpression of cGAS activated the transcription factor IRF3 and induced interferon-β in a STING-dependent manner. Knockdown of cGAS inhibited IRF3 activation and interferon-β induction by DNA transfection or DNA virus infection. cGAS bound to DNA in the cytoplasm and catalyzed cGAMP synthesis. These results indicate that cGAS is a cytosolic DNA sensor that induces interferons by producing the second messenger cGAMP.
                Bookmark

                Author and article information

                Contributors
                Journal
                The EMBO Journal
                The EMBO Journal
                EMBO
                0261-4189
                1460-2075
                April 19 2022
                Affiliations
                [1 ]School of Pharmaceutical Sciences Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing China
                [2 ]Beijing Advanced Innovation Center for Structural Biology Tsinghua University Beijing China
                [3 ]Tsinghua‐Peking Center for Life Sciences Tsinghua University Beijing China
                [4 ]Laboratory of Molecular Modeling and Design State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
                [5 ]School of Medicine Tsinghua University Beijing China
                Article
                10.15252/embj.2021109272
                35438208
                553cbe9f-be3b-4375-af3a-310dc747e618
                © 2022

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article