126
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Alterations of metabolic activity in human osteoarthritic osteoblasts by lipid peroxidation end product 4-hydroxynonenal

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          4-Hydroxynonenal (HNE), a lipid peroxidation end product, is produced abundantly in osteoarthritic (OA) articular tissues, but its role in bone metabolism is ill-defined. In this study, we tested the hypothesis that alterations in OA osteoblast metabolism are attributed, in part, to increased levels of HNE. Our data showed that HNE/protein adduct levels were higher in OA osteoblasts compared to normal and when OA osteoblasts were treated with H 2O 2. Investigating osteoblast markers, we found that HNE increased osteocalcin and type I collagen synthesis but inhibited alkaline phosphatase activity. We next examined the effects of HNE on the signaling pathways controlling cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6) expression in view of their putative role in OA pathophysiology. HNE dose-dependently decreased basal and tumour necrosis factor-α (TNF-α)-induced IL-6 expression while inducing COX-2 expression and prostaglandin E 2 (PGE 2) release. In a similar pattern, HNE induces changes in osteoblast markers as well as PGE 2 and IL-6 release in normal osteoblasts. Upon examination of signaling pathways involved in PGE 2 and IL-6 production, we found that HNE-induced PGE 2 release was abrogated by SB202190, a p38 mitogen-activated protein kinase (MAPK) inhibitor. Overexpression of p38 MAPK enhanced HNE-induced PGE 2 release. In this connection, HNE markedly increased the phosphorylation of p38 MAPK, JNK2, and transcription factors (CREB-1, ATF-2) with a concomitant increase in the DNA-binding activity of CRE/ATF. Transfection experiments with a human COX-2 promoter construct revealed that the CRE element (-58/-53 bp) was essential for HNE-induced COX-2 promoter activity. However, HNE inhibited the phosphorylation of IκBα and subsequently the DNA-binding activity of nuclear factor-κB. Overexpression of IKKα increased TNF-α-induced IL-6 production. This induction was inhibited when TNF-α was combined with HNE. These findings suggest that HNE may exert multiple effects on human OA osteoblasts by selective activation of signal transduction pathways and alteration of osteoblastic phenotype expression and pro-inflammatory mediator production.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          4-Hydroxy-2-nonenal: a product and mediator of oxidative stress.

          The onset of lipid peroxidation within cellular membranes is associated with changes in their physiochemical properties and with the impairment of enzymatic functions located in the membrane environment. There is increasing evidence that aldehydic molecules generated endogenously during the process of lipid peroidation are causally involved in most of the pathophysiological effects associated with oxidative stress in cells and tissues. 4-Hydroxy-2-nonenal (HNE), among them, is believed to be largely responsible for cytopathological effects observed during oxidative stree in vivo and has achieved the status of one of the best recognized and most studied of the cytotoxic products of lipid peroxidation. In the present review, I provide a comprehensive summary of HNE, as the product and mediator or oxidative stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxidative stress modulates osteoblastic differentiation of vascular and bone cells.

            Oxidative stress may regulate cellular function in multiple pathological conditions, including atherosclerosis. One feature of the atherosclerotic plaque is calcium mineral deposition, which appears to result from the differentiation of vascular osteoblastic cells, calcifying vascular cells (CVC). To determine the role of oxidative stress in regulating the activity of CVC, we treated these cells with hydrogen peroxide (H(2)O(2)) or xanthine/xanthine oxidase (XXO) and assessed their effects on intracellular oxidative stress, differentiation, and mineralization. These agents increased intracellular oxidative stress as determined by 2,7 dichlorofluorescein fluorescence, and enhanced osteoblastic differentiation of vascular cells, based on alkaline phosphatase activity and mineralization. In contrast, H(2)O(2) and XXO resulted in inhibition of differentiation markers in bone osteoblastic cells, MC3T3-E1, and marrow stromal cells, M2-10B4, while increasing oxidative stress. In addition, minimally oxidized low-density lipoprotein (MM-LDL), previously shown to enhance vascular cell and inhibit bone cell differentiation, also increased intracellular oxidative stress in the three cell types. These effects of XXO and MM-LDL were counteracted by the antioxidants Trolox and pyrrolidinedithiocarbamate. These results suggest that oxidative stress modulates differentiation of vascular and bone cells oppositely, which may explain the parallel buildup and loss of calcification, seen in vascular calcification and osteoporosis, respectively.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IL-6 is produced by osteoblasts and induces bone resorption.

              To examine the possible involvement of IL-6 in bone metabolism, a mouse osteoblastic cell line (MC3T3-E1) and primary osteoblast-like cells from fetal mouse calvaria were cultured with several systemic and local bone-resorbing agents and their expression of IL-6 mRNA was determined. Local bone-resorbing agents such as IL-1 alpha, IL-1 beta, TNF-alpha, and LPS greatly induced IL-6 mRNA expression in both MC3T3-E1 cells and primary osteoblast-like cells. Parathyroid hormone slightly increased expression of IL-6 mRNA in primary osteoblast-like cells but not in MC3T3-E1 cells. Neither IL-6 nor 1 alpha,25-dihydroxyvitamin D3 increased expression of IL-6 mRNA in either of the osteoblast-like cells. In agreement with the expression of IL-6 mRNA, biologically active IL-6 was produced in response to the treatment with IL-1 alpha, TNF-alpha, and LPS in MC3T3-E1 cells. Adding IL-6 dose dependently stimulated the release of 45Ca from prelabeled fetal mouse calvaria. Simultaneously adding suboptimal concentrations of IL-6 and IL-1 alpha induced bone resorption cooperatively. In accord with the increase in the release of 45Ca by IL-6, there were three times as many osteoclasts in the bone sections of calvaria cultured with IL-6 for 5 days as in the controls. IL-6 slightly suppressed alkaline phosphatase activity and collagen synthesis in MC3T3-E1 cells. These results indicate that IL-6 is also produced by osteoblasts, preferentially in response to local bone-resorbing agents, and it induces bone resorption both alone and in concert with other bone-resorbing agents.
                Bookmark

                Author and article information

                Journal
                Arthritis Res Ther
                Arthritis Research & Therapy
                BioMed Central (London )
                1478-6354
                1478-6362
                2006
                16 October 2006
                : 8
                : 6
                : R159
                Affiliations
                [1 ]Orthopaedic Research Laboratory, Sacre-Coeur Hospital, University of Montreal, 5400 Gouin West, Montreal, Quebec, Canada H4J 1C5
                Article
                ar2066
                10.1186/ar2066
                1794501
                17042956
                56c83ca3-98de-4eec-a81c-a09557f90454
                Copyright © 2006 Shi et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 April 2006
                : 13 June 2006
                : 13 September 2006
                : 16 October 2006
                Categories
                Research Article

                Orthopedics
                Orthopedics

                Comments

                Comment on this article