5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HDAC11: a rising star in epigenetics

      , , , ,
      Biomedicine & Pharmacotherapy
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references99

          • Record: found
          • Abstract: found
          • Article: not found

          The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men.

          Protein lysine deacetylases have a pivotal role in numerous biological processes and can be divided into the Rpd3/Hda1 and sirtuin families, each having members in diverse organisms including prokaryotes. In vertebrates, the Rpd3/Hda1 family contains 11 members, traditionally referred to as histone deacetylases (HDAC) 1-11, which are further grouped into classes I, II and IV. Whereas most class I HDACs are subunits of multiprotein nuclear complexes that are crucial for transcriptional repression and epigenetic landscaping, class II members regulate cytoplasmic processes or function as signal transducers that shuttle between the cytoplasm and the nucleus. Little is known about class IV HDAC11, although its evolutionary conservation implies a fundamental role in various organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular alterations in triple-negative breast cancer-the road to new treatment strategies.

            Triple-negative breast cancer is a heterogeneous disease and specific therapies have not been available for a long time. Therefore, conventional chemotherapy is still considered the clinical state of the art. Different subgroups of triple-negative breast cancer have been identified on the basis of protein expression, mRNA signatures, and genomic alterations. Important elements of triple-negative breast cancer biology include high proliferative activity, an increased immunological infiltrate, a basal-like and a mesenchymal phenotype, and deficiency in homologous recombination, which is in part associated with loss of BRCA1 or BRCA2 function. A minority of triple-negative tumours express luminal markers, such as androgen receptors, and have a lower proliferative activity. These biological subgroups are overlapping and currently cannot be combined into a unified model of triple-negative breast cancer biology. Nevertheless, the molecular analysis of this disease has identified potential options for targeted therapeutic intervention. This has led to promising clinical strategies, including modified chemotherapy approaches targeting the DNA damage response, angiogenesis inhibitors, immune checkpoint inhibitors, or even anti-androgens, all of which are being evaluated in phase 1-3 clinical studies. This Series paper focuses on the most relevant clinical questions, summarises the results of recent clinical trials, and gives an overview of ongoing studies and trial concepts that will lead to a more refined therapy for this tumour type.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression

                Bookmark

                Author and article information

                Journal
                Biomedicine & Pharmacotherapy
                Biomedicine & Pharmacotherapy
                Elsevier BV
                07533322
                November 2020
                November 2020
                : 131
                : 110607
                Article
                10.1016/j.biopha.2020.110607
                32841898
                56d79d96-249d-49eb-9563-53c087444fbc
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article