0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting G-quadruplexes to achieve antiviral activity

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Graphical abstract

          Abstract

          With the emergence of new viruses in the human population and the fast mutation rates of existing viruses, new antiviral targets and compounds are needed. Most existing antiviral drugs are active against proteins of a handful of viruses. Most of these proteins in the end affect viral nucleic acid processing, but direct nucleic acid targeting is less represented due to the difficulty of selectively acting at the nucleic acid of interest. Recently, nucleic acids have been shown to fold in structures alternative to the classic double helix and Watson and Crick base-pairing. Among these non-canonical structures, G-quadruplexes (G4s) have attracted interest because of their key biological roles that are being discovered. Molecules able to selectively target G4s have been developed and since G4s have been investigated as targets in several human pathologies, including viral infections. Here, after briefly introducing viruses, G4s and the G4-binding molecules with antiviral properties, we comment on the mechanisms at the base of the antiviral activity reported for G4-binding molecules. Understanding how G4-ligands act in infected cells will possibly help designing and developing next-generation antiviral drugs.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          Dexamethasone in Hospitalized Patients with Covid-19 — Preliminary Report

          Abstract Background Coronavirus disease 2019 (Covid-19) is associated with diffuse lung damage. Glucocorticoids may modulate inflammation-mediated lung injury and thereby reduce progression to respiratory failure and death. Methods In this controlled, open-label trial comparing a range of possible treatments in patients who were hospitalized with Covid-19, we randomly assigned patients to receive oral or intravenous dexamethasone (at a dose of 6 mg once daily) for up to 10 days or to receive usual care alone. The primary outcome was 28-day mortality. Here, we report the preliminary results of this comparison. Results A total of 2104 patients were assigned to receive dexamethasone and 4321 to receive usual care. Overall, 482 patients (22.9%) in the dexamethasone group and 1110 patients (25.7%) in the usual care group died within 28 days after randomization (age-adjusted rate ratio, 0.83; 95% confidence interval [CI], 0.75 to 0.93; P<0.001). The proportional and absolute between-group differences in mortality varied considerably according to the level of respiratory support that the patients were receiving at the time of randomization. In the dexamethasone group, the incidence of death was lower than that in the usual care group among patients receiving invasive mechanical ventilation (29.3% vs. 41.4%; rate ratio, 0.64; 95% CI, 0.51 to 0.81) and among those receiving oxygen without invasive mechanical ventilation (23.3% vs. 26.2%; rate ratio, 0.82; 95% CI, 0.72 to 0.94) but not among those who were receiving no respiratory support at randomization (17.8% vs. 14.0%; rate ratio, 1.19; 95% CI, 0.91 to 1.55). Conclusions In patients hospitalized with Covid-19, the use of dexamethasone resulted in lower 28-day mortality among those who were receiving either invasive mechanical ventilation or oxygen alone at randomization but not among those receiving no respiratory support. (Funded by the Medical Research Council and National Institute for Health Research and others; RECOVERY ClinicalTrials.gov number, NCT04381936; ISRCTN number, 50189673.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HIV-1 Dynamics in Vivo: Virion Clearance Rate, Infected Cell Life-Span, and Viral Generation Time

            A new mathematical model was used to analyze a detailed set of human immunodeficiency virus-type 1 (HIV-1) viral load data collected from five infected individuals after the administration of a potent inhibitor of HIV-1 protease. Productively infected cells were estimated to have, on average, a life-span of 2.2 days (half-life t 1/2 = 1.6 days), and plasma virions were estimated to have a mean life-span of 0.3 days (t 1/2 = 0.24 days). The estimated average total HIV-1 production was 10.3 x 10(9) virions per day, which is substantially greater than previous minimum estimates. The results also suggest that the minimum duration of the HIV-1 life cycle in vivo is 1.2 days on average, and that the average HIV-1 generation time--defined as the time from release of a virion until it infects another cell and causes the release of a new generation of viral particles--is 2.6 days. These findings on viral dynamics provide not only a kinetic picture of HIV-1 pathogenesis, but also theoretical principles to guide the development of treatment strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The regulation and functions of DNA and RNA G-quadruplexes

              DNA and RNA can adopt various secondary structures. Four-stranded G-quadruplex (G4) structures form through self-recognition of guanines into stacked tetrads, and considerable biophysical and structural evidence exists for G4 formation in vitro. Computational studies and sequencing methods have revealed the prevalence of G4 sequence motifs at gene regulatory regions in various genomes, including in humans. Experiments using chemical, molecular and cell biology methods have demonstrated that G4s exist in chromatin DNA and in RNA, and have linked G4 formation with key biological processes ranging from transcription and translation to genome instability and cancer. In this Review, we first discuss the identification of G4s and evidence for their formation in cells using chemical biology, imaging and genomic technologies. We then discuss possible functions of DNA G4s and their interacting proteins, particularly in transcription, telomere biology and genome instability. Roles of RNA G4s in RNA biology, especially in translation, are also discussed. Furthermore, we consider the emerging relationships of G4s with chromatin and with RNA modifications. Finally, we discuss the connection between G4 formation and synthetic lethality in cancer cells, and recent progress towards considering G4s as therapeutic targets in human diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Bioorg Med Chem Lett
                Bioorg Med Chem Lett
                Bioorganic & Medicinal Chemistry Letters
                Elsevier Science Ltd
                0960-894X
                1464-3405
                01 January 2023
                01 January 2023
                : 79
                : 129085
                Affiliations
                [a ]Department of Molecular Medicine, University of Padua, Italy
                [b ]Microbiology and Virology Unit, Padua University Hospital, Padua, Italy
                Author notes
                [* ]Corresponding author at: Department of Molecular Medicine, University of Padua, Italy. sara.richter@ 123456unipd.it
                Article
                S0960-894X(22)00561-3 129085
                10.1016/j.bmcl.2022.129085
                9760570
                36423824
                5769a031-d5ab-4e4d-8273-eb418fd5cc49
                © 2022 The Author(s)

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 1 September 2022
                : 9 November 2022
                : 16 November 2022
                Categories
                Article

                Pharmaceutical chemistry
                g-quadruplex,virus,antiviral activity,non-canonical nucleic acids,ligands,g-quadruplex, g4

                Comments

                Comment on this article