46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The regulation and functions of DNA and RNA G-quadruplexes

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DNA and RNA can adopt various secondary structures. Four-stranded G-quadruplex (G4) structures form through self-recognition of guanines into stacked tetrads, and considerable biophysical and structural evidence exists for G4 formation in vitro. Computational studies and sequencing methods have revealed the prevalence of G4 sequence motifs at gene regulatory regions in various genomes, including in humans. Experiments using chemical, molecular and cell biology methods have demonstrated that G4s exist in chromatin DNA and in RNA, and have linked G4 formation with key biological processes ranging from transcription and translation to genome instability and cancer. In this Review, we first discuss the identification of G4s and evidence for their formation in cells using chemical biology, imaging and genomic technologies. We then discuss possible functions of DNA G4s and their interacting proteins, particularly in transcription, telomere biology and genome instability. Roles of RNA G4s in RNA biology, especially in translation, are also discussed. Furthermore, we consider the emerging relationships of G4s with chromatin and with RNA modifications. Finally, we discuss the connection between G4 formation and synthetic lethality in cancer cells, and recent progress towards considering G4s as therapeutic targets in human diseases.

          Related collections

          Most cited references138

          • Record: found
          • Abstract: found
          • Article: not found

          The Stress Granule Transcriptome Reveals Principles of mRNA Accumulation in Stress Granules

          Stress granules are mRNA-protein assemblies formed from nontranslating mRNAs. Stress granules are important in the stress response and may contribute to some degenerative diseases. Here we describe the stress granule transcriptome of yeast and mammalian cells through RNA-Seq analysis of purified stress granule cores and smFISH validation. While essentially every mRNA, and some ncRNAs, can be targeted to stress granules, the targeting efficiency varies from <1% to >95%. mRNA accumulation in stress granules correlates with longer coding and UTR regions and poor translatability. Quantifying the RNA-Seq analysis by smFISH reveals only 10% of bulk mRNA molecules accumulate in mammalian stress granules, and only 185 genes have more than 50% of their mRNA molecules in stress granules. These results suggest stress granules may not represent a specific biological program of mRNP assembly, but instead form by condensation of nontranslating mRNPs in proportion to their length and lack of association with ribosomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution.

            Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) interrogates local backbone flexibility in RNA at single-nucleotide resolution under diverse solution environments. Flexible RNA nucleotides preferentially sample local conformations that enhance the nucleophilic reactivity of 2'-hydroxyl groups toward electrophiles, such as N-methylisatoic anhydride (NMIA). Modified sites are detected as stops in an optimized primer extension reaction, followed by electrophoretic fragment separation. SHAPE chemistry scores local nucleotide flexibility at all four ribonucleotides in a single experiment and discriminates between base-paired versus unconstrained or flexible residues with a dynamic range of 20-fold or greater. Quantitative SHAPE reactivity information can be used to establish the secondary structure of an RNA, to improve the accuracy of structure prediction algorithms, to monitor structural differences between related RNAs or a single RNA in different states, and to detect ligand binding sites. SHAPE chemistry rarely needs significant optimization and requires two days to complete for an RNA of 100-200 nucleotides.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer

              The translational control of oncoprotein expression is implicated in many cancers. Here we report an eIF4A/DDX2 RNA helicase-dependent mechanism of translational control that contributes to oncogenesis and underlies the anticancer effects of Silvestrol and related compounds. For example, eIF4A promotes T-ALL development in vivo and is required for leukaemia maintenance. Accordingly, inhibition of eIF4A with Silvestrol has powerful therapeutic effects in vitro and in vivo. We use transcriptome-scale ribosome footprinting to identify the hallmarks of eIF4A-dependent transcripts. These include 5′UTR sequences such as the 12-mer guanine quartet (CGG)4 motif that can form RNA G-quadruplex structures. Notably, among the most eIF4A-dependent and Silvestrol-sensitive transcripts are a number of oncogenes, super-enhancer associated transcription factors, and epigenetic regulators. Hence, the 5′UTRs of selected cancer genes harbour a targetable requirement for the eIF4A RNA helicase.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Molecular Cell Biology
                Nat Rev Mol Cell Biol
                Springer Science and Business Media LLC
                1471-0072
                1471-0080
                April 20 2020
                Article
                10.1038/s41580-020-0236-x
                7115845
                32313204
                c7283295-249b-4e45-957c-26ebdf936c7e
                © 2020

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article