3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A field intercomparison of three passive air samplers for gaseous mercury in ambient air

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. Passive air samplers (PASs), which provide time-averaged concentrations of gaseous mercury over the timescale of weeks to months, are promising for filling a gap in the monitoring of atmospheric mercury worldwide. Their usefulness will depend on their ease of use and robustness under field conditions, their availability and affordability, and most notably, their ability to provide results of acceptable precision and accuracy. Here we describe a comparative evaluation of three PASs with respect to their ability to precisely and accurately record atmospheric background mercury concentrations at sites in both southern Italy and southern Ontario, Canada. The study includes the CNR-PAS with gold nanoparticles as a sorbent, developed by the Italian National Research Council, the IVL-PAS using an activated carbon-coated disk, developed by the Swedish Environmental Research Institute, and the MerPAS® using a sulfur-impregnated activated carbon sorbent, developed at the University of Toronto and commercialized by Tekran. Detection limits are deduced from the variability in the amount of mercury quantified in more than 20 field blank samples for each PAS. Analytical and sampling precision is quantified through 22 triplicate deployments for each PAS, ranging in duration from 2 to 12 weeks. Accuracy and bias are assessed through comparison with gaseous elemental mercury concentrations recorded by Tekran 2537 automated mercury analyzers operating alongside the PASs at both locations. The performance of the PASs was significantly better in Italy, with all of them providing concentrations that are not significantly different from the average concentrations of the Tekran 2537 instruments. In Canada, where weather conditions were much harsher and more variable during the February through April deployment period, there are differences amongst the PASs. At both sites, the MerPAS® is currently the most sensitive, precise, and accurate among the three PASs. A key reason for this is the larger size and the radial configuration of the MerPAS®, which results in lower blank levels relative to the sequestered amounts of mercury when compared to the other two PASs, which rely on axial diffusion geometries. Since blank correction becomes relatively smaller with longer deployments, performance tends to be closer amongst the PASs during deployments of 8 and 12 weeks.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: not found
          • Article: not found

          lmerTest Package: Tests in Linear Mixed Effects Models

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            APE: Analyses of Phylogenetics and Evolution in R language.

            Analysis of Phylogenetics and Evolution (APE) is a package written in the R language for use in molecular evolution and phylogenetics. APE provides both utility functions for reading and writing data and manipulating phylogenetic trees, as well as several advanced methods for phylogenetic and evolutionary analysis (e.g. comparative and population genetic methods). APE takes advantage of the many R functions for statistics and graphics, and also provides a flexible framework for developing and implementing further statistical methods for the analysis of evolutionary processes. The program is free and available from the official R package archive at http://cran.r-project.org/src/contrib/PACKAGES.html#ape. APE is licensed under the GNU General Public License.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mercury as a Global Pollutant: Sources, Pathways, and Effects

              Mercury (Hg) is a global pollutant that affects human and ecosystem health. We synthesize understanding of sources, atmosphere-land-ocean Hg dynamics and health effects, and consider the implications of Hg-control policies. Primary anthropogenic Hg emissions greatly exceed natural geogenic sources, resulting in increases in Hg reservoirs and subsequent secondary Hg emissions that facilitate its global distribution. The ultimate fate of emitted Hg is primarily recalcitrant soil pools and deep ocean waters and sediments. Transfers of Hg emissions to largely unavailable reservoirs occur over the time scale of centuries, and are primarily mediated through atmospheric exchanges of wet/dry deposition and evasion from vegetation, soil organic matter and ocean surfaces. A key link between inorganic Hg inputs and exposure of humans and wildlife is the net production of methylmercury, which occurs mainly in reducing zones in freshwater, terrestrial, and coastal environments, and the subsurface ocean. Elevated human exposure to methylmercury primarily results from consumption of estuarine and marine fish. Developing fetuses are most at risk from this neurotoxin but health effects of highly exposed populations and wildlife are also a concern. Integration of Hg science with national and international policy efforts is needed to target efforts and evaluate efficacy.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Atmospheric Measurement Techniques
                Atmos. Meas. Tech.
                Copernicus GmbH
                1867-8548
                2021
                May 20 2021
                : 14
                : 5
                : 3657-3672
                Article
                10.5194/amt-14-3657-2021
                5816c37f-7d81-4311-a864-3450961e4c13
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article