1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional decoding and meta-analytic connectivity modeling in thyroid-associated ophthalmopathy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Thyroid-associated ophthalmopathy (TAO) is an orbital disease closely related to thyroid disease with a long-lasting duration that can be blinding and disabling. Recently, structural and functional neuroimaging studies have been performed in TAO patients, but studies have reported inconsistent results. This quantitative meta-analysis was conducted to identify convergent patterns of abnormal brain function among different studies in TAO.

          Methods

          We searched PubMed, EMBASE, Cochrane, and Web of Science, performed reference tracking, and retrieved 15 eligible studies. Peak coordinates were extracted from these studies and subsequently tested for convergence using activation likelihood estimation (ALE).

          Results

          Compared to healthy subjects, resting-state brain activity in the whole brain of TAO patients was significantly increased in the left superior frontal gyrus (SFG) and decreased in the left cuneus/precuneus. Functional decoding analysis of the BrainMap database revealed that these regions are predominantly associated with cognitive and emotional impairment. In this study, task-related meta-analytic connectivity modeling (MACM) analysis was used to describe the connectivity and function of the two seed regions. Significant coactivation of these regions was found primarily in the bilateral superior parietal lobule, medial frontal gyrus, left fusiform gyrus, left cingulate gyrus, supplementary motor area and thalamus.

          Conclusion

          Our findings underscore the role of the SFG and the cuneus/precuneus in the pathophysiology of TAO, highlighting the crucial impact of working memory deficits.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement

          Systematic reviews and meta-analyses have become increasingly important in health care. Clinicians read them to keep up to date with their field,1,2 and they are often used as a starting point for developing clinical practice guidelines. Granting agencies may require a systematic review to ensure there is justification for further research,3 and some health care journals are moving in this direction.4 As with all research, the value of a systematic review depends on what was done, what was found, and the clarity of reporting. As with other publications, the reporting quality of systematic reviews varies, limiting readers' ability to assess the strengths and weaknesses of those reviews. Several early studies evaluated the quality of review reports. In 1987, Mulrow examined 50 review articles published in 4 leading medical journals in 1985 and 1986 and found that none met all 8 explicit scientific criteria, such as a quality assessment of included studies.5 In 1987, Sacks and colleagues6 evaluated the adequacy of reporting of 83 meta-analyses on 23 characteristics in 6 domains. Reporting was generally poor; between 1 and 14 characteristics were adequately reported (mean = 7.7; standard deviation = 2.7). A 1996 update of this study found little improvement.7 In 1996, to address the suboptimal reporting of meta-analyses, an international group developed a guidance called the QUOROM Statement (QUality Of Reporting Of Meta-analyses), which focused on the reporting of meta-analyses of randomized controlled trials.8 In this article, we summarize a revision of these guidelines, renamed PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses), which have been updated to address several conceptual and practical advances in the science of systematic reviews (Box 1). Terminology The terminology used to describe a systematic review and meta-analysis has evolved over time. One reason for changing the name from QUOROM to PRISMA was the desire to encompass both systematic reviews and meta-analyses. We have adopted the definitions used by the Cochrane Collaboration.9 A systematic review is a review of a clearly formulated question that uses systematic and explicit methods to identify, select, and critically appraise relevant research, and to collect and analyze data from the studies that are included in the review. Statistical methods (meta-analysis) may or may not be used to analyze and summarize the results of the included studies. Meta-analysis refers to the use of statistical techniques in a systematic review to integrate the results of included studies. Developing the PRISMA Statement A 3-day meeting was held in Ottawa, Canada, in June 2005 with 29 participants, including review authors, methodologists, clinicians, medical editors, and a consumer. The objective of the Ottawa meeting was to revise and expand the QUOROM checklist and flow diagram, as needed. The executive committee completed the following tasks, prior to the meeting: a systematic review of studies examining the quality of reporting of systematic reviews, and a comprehensive literature search to identify methodological and other articles that might inform the meeting, especially in relation to modifying checklist items. An international survey of review authors, consumers, and groups commissioning or using systematic reviews and meta-analyses was completed, including the International Network of Agencies for Health Technology Assessment (INAHTA) and the Guidelines International Network (GIN). The survey aimed to ascertain views of QUOROM, including the merits of the existing checklist items. The results of these activities were presented during the meeting and are summarized on the PRISMA Website. Only items deemed essential were retained or added to the checklist. Some additional items are nevertheless desirable, and review authors should include these, if relevant.10 For example, it is useful to indicate whether the systematic review is an update11 of a previous review, and to describe any changes in procedures from those described in the original protocol. Shortly after the meeting a draft of the PRISMA checklist was circulated to the group, including those invited to the meeting but unable to attend. A disposition file was created containing comments and revisions from each respondent, and the checklist was subsequently revised 11 times. The group approved the checklist, flow diagram, and this summary paper. Although no direct evidence was found to support retaining or adding some items, evidence from other domains was believed to be relevant. For example, Item 5 asks authors to provide registration information about the systematic review, including a registration number, if available. Although systematic review registration is not yet widely available,12,13 the participating journals of the International Committee of Medical Journal Editors (ICMJE)14 now require all clinical trials to be registered in an effort to increase transparency and accountability.15 Those aspects are also likely to benefit systematic reviewers, possibly reducing the risk of an excessive number of reviews addressing the same question16,17 and providing greater transparency when updating systematic reviews. The PRISMA Statement The PRISMA Statement consists of a 27-item checklist (Table 1; see also Text S1 for a downloadable template for researchers to re-use) and a 4-phase flow diagram (Figure 1; see also Figure S1 for a downloadable template for researchers to re-use). The aim of the PRISMA Statement is to help authors improve the reporting of systematic reviews and meta-analyses. We have focused on randomized trials, but PRISMA can also be used as a basis for reporting systematic reviews of other types of research, particularly evaluations of interventions. PRISMA may also be useful for critical appraisal of published systematic reviews. However, the PRISMA checklist is not a quality assessment instrument to gauge the quality of a systematic review. Box 1 Conceptual issues in the evolution from QUOROM to PRISMA Figure 1 Flow of information through the different phases of a systematic review Table 1 Checklist of items to include when reporting a systematic review or meta-analysis From QUOROM to PRISMA The new PRISMA checklist differs in several respects from the QUOROM checklist, and the substantive specific changes are highlighted in Table 2. Generally, the PRISMA checklist “decouples” several items present in the QUOROM checklist and, where applicable, several checklist items are linked to improve consistency across the systematic review report. Table 2 Substantive specific changes between the QUOROM checklist and the PRISMA checklist (a tick indicates the presence of the topic in QUOROM or PRISMA) The flow diagram has also been modified. Before including studies and providing reasons for excluding others, the review team must first search the literature. This search results in records. Once these records have been screened and eligibility criteria applied, a smaller number of articles will remain. The number of included articles might be smaller (or larger) than the number of studies, because articles may report on multiple studies and results from a particular study may be published in several articles. To capture this information, the PRISMA flow diagram now requests information on these phases of the review process. Endorsement The PRISMA Statement should replace the QUOROM Statement for those journals that have endorsed QUOROM. We hope that other journals will support PRISMA; they can do so by registering on the PRISMA Website. To underscore to authors, and others, the importance of transparent reporting of systematic reviews, we encourage supporting journals to reference the PRISMA Statement and include the PRISMA web address in their Instructions to Authors. We also invite editorial organizations to consider endorsing PRISMA and encourage authors to adhere to its principles. The PRISMA Explanation and Elaboration Paper In addition to the PRISMA Statement, a supporting Explanation and Elaboration document has been produced18 following the style used for other reporting guidelines.19-21 The process of completing this document included developing a large database of exemplars to highlight how best to report each checklist item, and identifying a comprehensive evidence base to support the inclusion of each checklist item. The Explanation and Elaboration document was completed after several face-to-face meetings and numerous iterations among several meeting participants, after which it was shared with the whole group for additional revisions and final approval. Finally, the group formed a dissemination subcommittee to help disseminate and implement PRISMA. Discussion The quality of reporting of systematic reviews is still not optimal.22-27 In a recent review of 300 systematic reviews, few authors reported assessing possible publication bias,22 even though there is overwhelming evidence both for its existence28 and its impact on the results of systematic reviews.29 Even when the possibility of publication bias is assessed, there is no guarantee that systematic reviewers have assessed or interpreted it appropriately.30 Although the absence of reporting such an assessment does not necessarily indicate that it was not done, reporting an assessment of possible publication bias is likely to be a marker of the thoroughness of the conduct of the systematic review. Several approaches have been developed to conduct systematic reviews on a broader array of questions. For example, systematic reviews are now conducted to investigate cost-effectiveness,31 diagnostic32 or prognostic questions,33 genetic associations,34 and policy-making.35 The general concepts and topics covered by PRISMA are all relevant to any systematic review, not just those whose objective is to summarize the benefits and harms of a health care intervention. However, some modifications of the checklist items or flow diagram will be necessary in particular circumstances. For example, assessing the risk of bias is a key concept, but the items used to assess this in a diagnostic review are likely to focus on issues such as the spectrum of patients and the verification of disease status, which differ from reviews of interventions. The flow diagram will also need adjustments when reporting individual patient data meta-analysis.36 We have developed an explanatory document18 to increase the usefulness of PRISMA. For each checklist item, this document contains an example of good reporting, a rationale for its inclusion, and supporting evidence, including references, whenever possible. We believe this document will also serve as a useful resource for those teaching systematic review methodology. We encourage journals to include reference to the explanatory document in their Instructions to Authors. Like any evidence-based endeavour, PRISMA is a living document. To this end we invite readers to comment on the revised version, particularly the new checklist and flow diagram, through the PRISMA website. We will use such information to inform PRISMA's continued development. Note: To encourage dissemination of the PRISMA Statement, this article is freely accessible on the Open Medicine website and the PLoS Medicine website and is also published in the Annals of Internal Medicine, BMJ, and Journal of Clinical Epidemiology. The authors jointly hold the copyright of this article. For details on further use, see the PRISMA website. The PRISMA Explanation and Elaboration Paper is available at the PLoS Medicine website. Supporting Information Figure S1 Flow of information through the different phases of a systematic review (downloadable template document for researchers to re-use) Text S1 Checklist of items to include when reporting a systematic review or meta-analysis (downloadable template document for researchers to re-use)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A default mode of brain function.

            A baseline or control state is fundamental to the understanding of most complex systems. Defining a baseline state in the human brain, arguably our most complex system, poses a particular challenge. Many suspect that left unconstrained, its activity will vary unpredictably. Despite this prediction we identify a baseline state of the normal adult human brain in terms of the brain oxygen extraction fraction or OEF. The OEF is defined as the ratio of oxygen used by the brain to oxygen delivered by flowing blood and is remarkably uniform in the awake but resting state (e.g., lying quietly with eyes closed). Local deviations in the OEF represent the physiological basis of signals of changes in neuronal activity obtained with functional MRI during a wide variety of human behaviors. We used quantitative metabolic and circulatory measurements from positron-emission tomography to obtain the OEF regionally throughout the brain. Areas of activation were conspicuous by their absence. All significant deviations from the mean hemisphere OEF were increases, signifying deactivations, and resided almost exclusively in the visual system. Defining the baseline state of an area in this manner attaches meaning to a group of areas that consistently exhibit decreases from this baseline, during a wide variety of goal-directed behaviors monitored with positron-emission tomography and functional MRI. These decreases suggest the existence of an organized, baseline default mode of brain function that is suspended during specific goal-directed behaviors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The precuneus: a review of its functional anatomy and behavioural correlates.

              Functional neuroimaging studies have started unravelling unexpected functional attributes for the posteromedial portion of the parietal lobe, the precuneus. This cortical area has traditionally received little attention, mainly because of its hidden location and the virtual absence of focal lesion studies. However, recent functional imaging findings in healthy subjects suggest a central role for the precuneus in a wide spectrum of highly integrated tasks, including visuo-spatial imagery, episodic memory retrieval and self-processing operations, namely first-person perspective taking and an experience of agency. Furthermore, precuneus and surrounding posteromedial areas are amongst the brain structures displaying the highest resting metabolic rates (hot spots) and are characterized by transient decreases in the tonic activity during engagement in non-self-referential goal-directed actions (default mode of brain function). Therefore, it has recently been proposed that precuneus is involved in the interwoven network of the neural correlates of self-consciousness, engaged in self-related mental representations during rest. This hypothesis is consistent with the selective hypometabolism in the posteromedial cortex reported in a wide range of altered conscious states, such as sleep, drug-induced anaesthesia and vegetative states. This review summarizes the current knowledge about the macroscopic and microscopic anatomy of precuneus, together with its wide-spread connectivity with both cortical and subcortical structures, as shown by connectional and neurophysiological findings in non-human primates, and links these notions with the multifaceted spectrum of its behavioural correlates. By means of a critical analysis of precuneus activation patterns in response to different mental tasks, this paper provides a useful conceptual framework for matching the functional imaging findings with the specific role(s) played by this structure in the higher-order cognitive functions in which it has been implicated. Specifically, activation patterns appear to converge with anatomical and connectivity data in providing preliminary evidence for a functional subdivision within the precuneus into an anterior region, involved in self-centred mental imagery strategies, and a posterior region, subserving successful episodic memory retrieval.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                15 December 2023
                15 January 2024
                15 December 2023
                : 10
                : 1
                : e23749
                Affiliations
                [a ]School of Basic Medicine and Life Science, Hainan Medical University, Haikou, 571199, China
                [b ]The first people's hospital of lanzhou city, Lanzhou, 730000, China
                [c ]The University of Queensland, Brisbane, 4102, Australia
                [d ]Department of Endocrinology and Gerontology, Gansu Provincial Hospital, Lanzhou, 730000, China
                [e ]School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750000, China
                Author notes
                []Corresponding author. Department of Endocrinology and Gerontology, Gansu Provincial Hospital, 204 Donggang West Road, Lanzhou 730000, China. lzzq78@ 123456126.com
                Article
                S2405-8440(23)10957-1 e23749
                10.1016/j.heliyon.2023.e23749
                10788440
                38226223
                58535e10-a262-47fb-a6e3-04c515c136df
                © 2023 Published by Elsevier Ltd.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 25 March 2023
                : 24 October 2023
                : 12 December 2023
                Categories
                Research Article

                thyroid-associated ophthalmopathy,ale meta-analysis,superior frontal gyrus,cuneus

                Comments

                Comment on this article