12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A new gene superfamily of pathogen-response (repat) genes in Lepidoptera: classification and expression analysis.

      Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology
      Animals, Bacillus thuringiensis, genetics, physiology, Bacterial Proteins, toxicity, Endotoxins, Gene Expression Profiling, Genes, Insect, Hemolysin Proteins, Intestines, cytology, drug effects, microbiology, Larva, Lepidoptera, Metagenome, Stem Cells, metabolism

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Repat (REsponse to PAThogens) genes were first identified in the midgut of Spodoptera exigua (Lepidoptera: Noctuidae) in response to Bacillus thuringiensis and baculovirus exposure. Since then, additional repat gene homologs have been identified in different studies. In this study the comprehensive larval transcriptome from S. exigua was analyzed for the presence of novel repat-homolog sequences. These analyses revealed the presence of at least 46 repat genes in S. exigua, establishing a new gene superfamily in this species. Phylogenetic analysis and studies of conserved motifs in these hypothetical proteins have allowed their classification in two main classes, αREPAT and βREPAT. Studies on the transcriptional response of repat genes have shown that αREPAT and βREPAT differ in their sequence but also in the pattern of regulation. The αREPAT were mainly regulated in response to the Cry1Ca toxin from B. thuringiensis but not to the increase in the midgut microbiota load. In contrast, βREPAT were neither responding to Cry1Ca toxin nor to midgut microbiota. Differential expression between midgut stem cells and the whole midgut tissue was studied for the different repat genes revealing changes in the gene expression distribution between midgut stem cells and midgut tissue in response to midgut microbiota. This high diversity found in their sequence and in their expression profile suggests that REPAT proteins may be involved in multiple processes that could be of relevance for the understanding of the insect gut physiology. Copyright © 2012 Elsevier Inc. All rights reserved.

          Related collections

          Author and article information

          Comments

          Comment on this article