187
views
0
recommends
+1 Recommend
0 collections
    17
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Voltage-dependent Anion Channel-1 (VDAC-1) Contributes to ATP Release and Cell Volume Regulation in Murine Cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extracellular ATP regulates several elements of the mucus clearance process important for pulmonary host defense. However, the mechanisms mediating ATP release onto airway surfaces remain unknown. Mitochondrial voltage-dependent anion channels (mt-VDACs) translocate a variety of metabolites, including ATP and ADP, across the mitochondrial outer membrane, and a plasmalemmal splice variant (pl-VDAC-1) has been proposed to mediate ATP translocation across the plasma membrane. We tested the involvement of VDAC-1 in ATP release in a series of studies in murine cells. First, the full-length coding sequence was cloned from a mouse airway epithelial cell line (MTE7b ) and transfected into NIH 3T3 cells, and pl-VDAC-1-transfected cells exhibited higher rates of ATP release in response to medium change compared with mock-transfected cells. Second, ATP release was compared in cells isolated from VDAC-1 knockout [VDAC-1 (−/−)] and wild-type (WT) mice. Fibroblasts from VDAC-1 (−/−) mice released less ATP than WT mice in response to a medium change. Well-differentiated cultures from nasal and tracheal epithelia of VDAC-1 (−/−) mice exhibited less ATP release in response to luminal hypotonic challenge than WT mice. Confocal microscopy studies revealed that cell volume acutely increased in airway epithelia from both VDAC-1 (−/−) and WT mice after luminal hypotonic challenge, but VDAC-1 (−/−) cells exhibited a slower regulatory volume decrease (RVD) than WT cells. Addition of ATP or apyrase to the luminal surface of VDAC-1 (−/−) or WT cultures with hypotonic challenge produced similar initial cell height responses and RVD kinetics in both cell types, suggesting that involvement of VDAC-1 in RVD is through ATP release. Taken together, these studies suggest that VDAC-1, directly or indirectly, contributes to ATP release from murine cells. However, the observation that VDAC-1 knockout cells released a significant amount of ATP suggests that other molecules also play a role in this function.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          RADIOAUTOGRAPHIC STUDIES OF CHOLINE INCORPORATION INTO PERIPHERAL NERVE MYELIN

          This radioautographic study was designed to localize the cytological sites involved in the incorporation of a lipid precursor into the myelin and the myelin-related cell of the peripheral nervous system. Both myelinating and fully myelinated cultures of rat dorsal root ganglia were exposed to a 30-min pulse of tritiated choline and either fixed immediately or allowed 6 or 48 hr of chase incubation before fixation. After Epon embedding, light and electron microscopic radioautograms were prepared with Ilford L-4 emulsion. Analysis of the pattern of choline incorporation into myelinating cultures indicated that radioactivity appeared all along the length of the internode, without there being a preferential site of initial incorporation. Light microscopic radioautograms of cultures at varying states of maturity were compared in order to determine the relative degree of myelin labeling. This analysis indicated that the myelin-Schwann cell unit in the fully myelinated cultures incorporated choline as actively as did this unit in the myelinating cultures. Because of technical difficulties, it was not possible to determine the precise localization of the incorporated radioactivity within the compact myelin. These data are related to recent biochemical studies indicating that the mature myelin of the central nervous system does incorporate a significant amount of lipid precursor under the appropriate experimental conditions. These observations support the concept that a significant amount of myelin-related metabolic activity occurs in mature tissue; this activity is considered part of an essential and continuous process of myelin maintenance and repair.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            VDAC2 inhibits BAK activation and mitochondrial apoptosis.

            The multidomain proapoptotic molecules BAK or BAX are required to initiate the mitochondrial pathway of apoptosis. How cells maintain the potentially lethal proapoptotic effector BAK in a monomeric inactive conformation at mitochondria is unknown. In viable cells, we found BAK complexed with mitochondrial outer-membrane protein VDAC2, a VDAC isoform present in low abundance that interacts specifically with the inactive conformer of BAK. Cells deficient in VDAC2, but not cells lacking the more abundant VDAC1, exhibited enhanced BAK oligomerization and were more susceptible to apoptotic death. Conversely, overexpression of VDAC2 selectively prevented BAK activation and inhibited the mitochondrial apoptotic pathway. Death signals activate "BH3-only" molecules such as tBID, BIM, or BAD, which displace VDAC2 from BAK, enabling homo-oligomerization of BAK and apoptosis. Thus, VDAC2, an isoform restricted to mammals, regulates the activity of BAK and provides a connection between mitochondrial physiology and the core apoptotic pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides.

              Extracellular ATP, at micromolar concentrations, induces significant functional changes in a wide variety of cells and tissues. ATP can be released from the cytosol of damaged cells or from exocytotic vesicles and/or granules contained in many types of secretory cells. There are also efficient extracellular mechanisms for the rapid metabolism of released nucleotides by ecto-ATPases and 5'-nucleotidases. The diverse biological responses to ATP are mediated by a variety of cell surface receptors that are activated when ATP or other nucleotides are bound. The functionally identified nucleotide or P2-purinergic receptors include 1) ATP receptors that stimulate G protein-coupled effector enzymes and signaling cascades, including inositol phospholipid hydrolysis and the mobilization of intracellular Ca2+ stores; 2) ATP receptors that directly activate ligand-gated cation channels in the plasma membranes of many excitable cell types; 3) ATP receptors that, via the rapid induction of surface membrane channels and/or pores permeable to ions and endogenous metabolites, produce cytotoxic or activation responses in macrophages and other immune effector cells; and 4) ADP receptors that trigger rapid ion fluxes and aggregation responses in platelets. Current research in this area is directed toward the identification and structural characterization of these receptors by biochemical and molecular biological approaches.
                Bookmark

                Author and article information

                Journal
                J Gen Physiol
                The Journal of General Physiology
                The Rockefeller University Press
                0022-1295
                1540-7748
                November 2004
                : 124
                : 5
                : 513-526
                Affiliations
                [1 ]Cystic Fibrosis/Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
                [2 ]Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
                [3 ]Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
                Author notes

                Address correspondence to Seiko F. Okada, Cystic Fibrosis/Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599. Fax: (919) 966-5178; email: seiko_okada@ 123456med.unc.edu

                Article
                200409154
                10.1085/jgp.200409154
                2234005
                15477379
                595878fe-d6f2-43be-bdc6-96626678f9e5
                Copyright © 2004, The Rockefeller University Press
                History
                : 23 July 2004
                : 10 September 2004
                Categories
                Article

                Anatomy & Physiology
                voltage-dependent anion channel,airway epithelia,atp release,regulatory volume decrease,osmotic cell swelling

                Comments

                Comment on this article