18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Essential roles for the splicing regulator nSR100/SRRM4 during nervous system development

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quesnel-Vallières et al. show that loss of the vertebrate- and neural-specific Ser/Arg repeat-related protein of 100 kDa (nSR100/SRRM4) impairs development of the central and peripheral nervous systems. Accompanying these developmental defects are widespread changes in alternative splicing (AS) that primarily result in shifts to nonneural patterns for different classes of splicing events. The main component of the altered AS program comprises 3- to 27-nt neural microexons, and inclusion of a 6-nt nSR100-activated microexon in Unc13b transcripts is sufficient to rescue a neuritogenesis defect in nSR100 mutant primary neurons.

          Abstract

          Alternative splicing (AS) generates vast transcriptomic complexity in the vertebrate nervous system. However, the extent to which trans-acting splicing regulators and their target AS regulatory networks contribute to nervous system development is not well understood. To address these questions, we generated mice lacking the vertebrate- and neural-specific Ser/Arg repeat-related protein of 100 kDa (nSR100/SRRM4). Loss of nSR100 impairs development of the central and peripheral nervous systems in part by disrupting neurite outgrowth, cortical layering in the forebrain, and axon guidance in the corpus callosum. Accompanying these developmental defects are widespread changes in AS that primarily result in shifts to nonneural patterns for different classes of splicing events. The main component of the altered AS program comprises 3- to 27-nucleotide (nt) neural microexons, an emerging class of highly conserved AS events associated with the regulation of protein interaction networks in developing neurons and neurological disorders. Remarkably, inclusion of a 6-nt, nSR100-activated microexon in Unc13b transcripts is sufficient to rescue a neuritogenesis defect in nSR100 mutant primary neurons. These results thus reveal critical in vivo neurodevelopmental functions of nSR100 and further link these functions to a conserved program of neuronal microexon splicing.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists

          Functional analysis of large gene lists, derived in most cases from emerging high-throughput genomic, proteomic and bioinformatics scanning approaches, is still a challenging and daunting task. The gene-annotation enrichment analysis is a promising high-throughput strategy that increases the likelihood for investigators to identify biological processes most pertinent to their study. Approximately 68 bioinformatics enrichment tools that are currently available in the community are collected in this survey. Tools are uniquely categorized into three major classes, according to their underlying enrichment algorithms. The comprehensive collections, unique tool classifications and associated questions/issues will provide a more comprehensive and up-to-date view regarding the advantages, pitfalls and recent trends in a simpler tool-class level rather than by a tool-by-tool approach. Thus, the survey will help tool designers/developers and experienced end users understand the underlying algorithms and pertinent details of particular tool categories/tools, enabling them to make the best choices for their particular research interests.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The evolutionary landscape of alternative splicing in vertebrate species.

            How species with similar repertoires of protein-coding genes differ so markedly at the phenotypic level is poorly understood. By comparing organ transcriptomes from vertebrate species spanning ~350 million years of evolution, we observed significant differences in alternative splicing complexity between vertebrate lineages, with the highest complexity in primates. Within 6 million years, the splicing profiles of physiologically equivalent organs diverged such that they are more strongly related to the identity of a species than they are to organ type. Most vertebrate species-specific splicing patterns are cis-directed. However, a subset of pronounced splicing changes are predicted to remodel protein interactions involving trans-acting regulators. These events likely further contributed to the diversification of splicing and other transcriptomic changes that underlie phenotypic differences among vertebrate species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A highly conserved program of neuronal microexons is misregulated in autistic brains.

              Alternative splicing (AS) generates vast transcriptomic and proteomic complexity. However, which of the myriad of detected AS events provide important biological functions is not well understood. Here, we define the largest program of functionally coordinated, neural-regulated AS described to date in mammals. Relative to all other types of AS within this program, 3-15 nucleotide "microexons" display the most striking evolutionary conservation and switch-like regulation. These microexons modulate the function of interaction domains of proteins involved in neurogenesis. Most neural microexons are regulated by the neuronal-specific splicing factor nSR100/SRRM4, through its binding to adjacent intronic enhancer motifs. Neural microexons are frequently misregulated in the brains of individuals with autism spectrum disorder, and this misregulation is associated with reduced levels of nSR100. The results thus reveal a highly conserved program of dynamic microexon regulation associated with the remodeling of protein-interaction networks during neurogenesis, the misregulation of which is linked to autism.
                Bookmark

                Author and article information

                Journal
                Genes Dev
                Genes Dev
                genesdev
                genesdev
                GAD
                Genes & Development
                Cold Spring Harbor Laboratory Press
                0890-9369
                1549-5477
                1 April 2015
                : 29
                : 7
                : 746-759
                Affiliations
                [1 ]Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada;
                [2 ]Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada;
                [3 ]Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
                Author notes
                [4]

                Present address: EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), Barcelona 08003, Spain

                Article
                8711660
                10.1101/gad.256115.114
                4387716
                25838543
                595fb95e-48a0-486d-8806-1d2d73142375
                © 2015 Quesnel-Vallières et al.; Published by Cold Spring Harbor Laboratory Press

                This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 18 November 2014
                : 27 February 2015
                Funding
                Funded by: Canadian Institutes of Health Research http://dx.doi.org/10.13039/501100000024
                Award ID: MOP-67011
                Award ID: MOP-14609
                Award ID: MOP-111199
                Funded by: Human Frontiers Science Program Organization
                Funded by: CIHR Banting and Best Scholarship
                Funded by: Ontario Graduate Scholarship
                Categories
                Research Papers

                alternative splicing,sr proteins,nervous system development,microexons

                Comments

                Comment on this article