36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cardiac Hypertrophy Involves Both Myocyte Hypertrophy and Hyperplasia in Anemic Zebrafish

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          An adult zebrafish heart possesses a high capacity of regeneration. However, it has been unclear whether and how myocyte hyperplasia contributes to cardiac remodeling in response to biomechanical stress and whether myocyte hypertrophy exists in the zebrafish. To address these questions, we characterized the zebrafish mutant tr265/tr265, whose Band 3 mutation disrupts erythrocyte formation and results in anemia. Although Band 3 does not express and function in the heart, the chronic anemia imposes a sequential biomechanical stress towards the heart.

          Methodology/Principal Findings

          Hearts of the tr265/tr265 Danio rerio mutant become larger than those of the sibling by week 4 post fertilization and gradually exhibit characteristics of human cardiomyopathy, such as muscular disarray, re-activated fetal gene expression, and severe arrhythmia. At the cellular level, we found both increased individual cardiomyocyte size and increased myocyte proliferation can be detected in week 4 to week 12 tr265/tr265 fish. Interestingly, all tr265/tr265 fish that survive after week-12 have many more cardiomyocytes of smaller size than those in the sibling, suggesting that myocyte hyperplasia allows the long-term survival of these fish. We also show the cardiac hypertrophy process can be recapitulated in wild-type fish using the anemia-inducing drug phenylhydrazine (PHZ).

          Conclusions/Significance

          The anemia-induced cardiac hypertrophy models reported here are the first adult zebrafish cardiac hypertrophy models characterized. Unlike mammalian models, both cardiomyocyte hypertrophy and hyperplasia contribute to the cardiac remodeling process in these models, thus allowing the effects of cardiomyocyte hyperplasia on cardiac remodeling to be studied. However, since anemia can induce effects on the heart other than biomechanical, non-anemic zebrafish cardiac hypertrophy models shall be generated and characterized.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Apoptosis, oncosis, and necrosis. An overview of cell death.

          The historical development of the cell death concept is reviewed, with special attention to the origin of the terms necrosis, coagulation necrosis, autolysis, physiological cell death, programmed cell death, chromatolysis (the first name of apoptosis in 1914), karyorhexis, karyolysis, and cell suicide, of which there are three forms: by lysosomes, by free radicals, and by a genetic mechanism (apoptosis). Some of the typical features of apoptosis are discussed, such as budding (as opposed to blebbing and zeiosis) and the inflammatory response. For cell death not by apoptosis the most satisfactory term is accidental cell death. Necrosis is commonly used but it is not appropriate, because it does not indicate a form of cell death but refers to changes secondary to cell death by any mechanism, including apoptosis. Abundant data are available on one form of accidental cell death, namely ischemic cell death, which can be considered an entity of its own, caused by failure of the ionic pumps of the plasma membrane. Because ischemic cell death (in known models) is accompanied by swelling, the name oncosis is proposed for this condition. The term oncosis (derived from ónkos, meaning swelling) was proposed in 1910 by von Reckling-hausen precisely to mean cell death with swelling. Oncosis leads to necrosis with karyolysis and stands in contrast to apoptosis, which leads to necrosis with karyorhexis and cell shrinkage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cardiac myocyte cell cycle control in development, disease, and regeneration.

            Cardiac myocytes rapidly proliferate during fetal life but exit the cell cycle soon after birth in mammals. Although the extent to which adult cardiac myocytes are capable of cell cycle reentry is controversial and species-specific differences may exist, it appears that for the vast majority of adult cardiac myocytes the predominant form of growth postnatally is an increase in cell size (hypertrophy) not number. Unfortunately, this limits the ability of the heart to restore function after any significant injury. Interest in novel regenerative therapies has led to the accumulation of much information on the mechanisms that regulate the rapid proliferation of cardiac myocytes in utero, their cell cycle exit in the perinatal period, and the permanent arrest (terminal differentiation) in adult myocytes. The recent identification of cardiac progenitor cells capable of giving rise to cardiac myocyte-like cells has challenged the dogma that the heart is a terminally differentiated organ and opened new prospects for cardiac regeneration. In this review, we summarize the current understanding of cardiomyocyte cell cycle control in normal development and disease. In addition, we also discuss the potential usefulness of cardiomyocyte self-renewal as well as feasibility of therapeutic manipulation of the cardiac myocyte cell cycle for cardiac regeneration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Is the failing heart energy starved? On using chemical energy to support cardiac function.

              The requirement of chemical energy in the form of ATP to support systolic and diastolic work of the heart is absolute. Because of its central role in cardiac metabolism and performance, the subject of this review on energetics in the failing heart is ATP. We briefly review the basics of myocardial ATP metabolism and describe how this changes in the failing heart. We present an analysis of what is now known about the causes and consequences of these energetic changes and conclude by commenting on unsolved problems and opportunities for future basic and clinical research.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2009
                12 August 2009
                : 4
                : 8
                : e6596
                Affiliations
                [1 ]Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
                [2 ]Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Minnesota, United States of America
                [3 ]Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
                [4 ]Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
                [5 ]Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
                Harvard University, United States of America
                Author notes

                Conceived and designed the experiments: XS TH XX. Performed the experiments: XS TH PB YD ZC RZ WH. Analyzed the data: XS TH PB YD ZC RZ WH YGL XX. Contributed reagents/materials/analysis tools: AJ BP YGL. Wrote the paper: TH XX.

                Article
                09-PONE-RA-09437R2
                10.1371/journal.pone.0006596
                2719798
                19672293
                5a867b2f-4a62-40b6-aa4b-ea18a792e466
                Sun et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 27 March 2009
                : 10 July 2009
                Page count
                Pages: 12
                Categories
                Research Article
                Cardiovascular Disorders
                Developmental Biology/Developmental Evolution
                Genetics and Genomics/Disease Models

                Uncategorized
                Uncategorized

                Comments

                Comment on this article