7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Using an integrative taxonomic approach to delimit a sibling species, Mycetomoellerius mikromelanos sp. nov. (Formicidae: Attini: Attina)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The fungus-growing ant Mycetomoellerius (previously Trachymyrmex) zeteki (Weber 1940) has been the focus of a wide range of studies examining symbiotic partners, garden pathogens, mating frequencies, and genomics. This is in part due to the ease of collecting colonies from creek embankments and its high abundance in the Panama Canal region. The original description was based on samples collected on Barro Colorado Island (BCI), Panama. However, most subsequent studies have sampled populations on the mainland 15 km southeast of BCI. Herein we show that two sibling ant species live in sympatry on the mainland: Mycetomoellerius mikromelanos Cardenas, Schultz, & Adams and M. zeteki. This distinction was originally based on behavioral differences of workers in the field and on queen morphology ( M. mikromelanos workers and queens are smaller and black while those of M. zeteki are larger and red). Authors frequently refer to either species as “ M. cf. zeteki,” indicating uncertainty about identity. We used an integrative taxonomic approach to resolve this, examining worker behavior, chemical profiles of worker volatiles, molecular markers, and morphology of all castes. For the latter, we used conventional taxonomic indicators from nine measurements, six extrapolated indices, and morphological characters. We document a new observation of a Diapriinae (Hymenoptera: Diapriidae) parasitoid wasp parasitizing M. zeteki. Finally, we discuss the importance of vouchering in dependable, accessible museum collections and provide a table of previously published papers to clarify the usage of the name T. zeteki. We found that most reports of M. zeteki or M. cf. zeteki—including a genome—actually refer to the new species M. mikromelanos.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: not found
          • Article: not found

          Fitting Linear Mixed-Effects Models Usinglme4

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Basic local alignment search tool.

            A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score. Recent mathematical results on the stochastic properties of MSP scores allow an analysis of the performance of this method as well as the statistical significance of alignments it generates. The basic algorithm is simple and robust; it can be implemented in a number of ways and applied in a variety of contexts including straightforward DNA and protein sequence database searches, motif searches, gene identification searches, and in the analysis of multiple regions of similarity in long DNA sequences. In addition to its flexibility and tractability to mathematical analysis, BLAST is an order of magnitude faster than existing sequence comparison tools of comparable sensitivity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies

              Large phylogenomics data sets require fast tree inference methods, especially for maximum-likelihood (ML) phylogenies. Fast programs exist, but due to inherent heuristics to find optimal trees, it is not clear whether the best tree is found. Thus, there is need for additional approaches that employ different search strategies to find ML trees and that are at the same time as fast as currently available ML programs. We show that a combination of hill-climbing approaches and a stochastic perturbation method can be time-efficiently implemented. If we allow the same CPU time as RAxML and PhyML, then our software IQ-TREE found higher likelihoods between 62.2% and 87.1% of the studied alignments, thus efficiently exploring the tree-space. If we use the IQ-TREE stopping rule, RAxML and PhyML are faster in 75.7% and 47.1% of the DNA alignments and 42.2% and 100% of the protein alignments, respectively. However, the range of obtaining higher likelihoods with IQ-TREE improves to 73.3-97.1%.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                peerj
                peerj
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                24 June 2021
                2021
                : 9
                : e11622
                Affiliations
                [1 ]Department of Evolution, Ecology and Organismal Biology, The Ohio State University , Columbus, OH, United States of America
                [2 ]Department of Ecology & Evolutionary Biology, University of Tennessee Knoxville , Knoxville, TN, United States of America
                [3 ]Department of Chemistry, Virginia Military Institute , Lexington, VA, United States of America
                [4 ]Department of Entomology, National Museum of Natural History, Smithsonian Institution , Washington, District of Colombia, United States of America
                Article
                11622
                10.7717/peerj.11622
                8236233
                34221725
                5aa66636-2730-48f4-b9ac-e53b79bd6d2b
                ©2021 Cardenas et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 16 December 2020
                : 26 May 2021
                Funding
                Funded by: National Science Foundation
                Award ID: DEB 1927224
                Award ID: 1654829
                Ted Schultz was supported by the National Science Foundation grants DEB 1927224 and 1654829. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Biodiversity
                Entomology
                Taxonomy
                Zoology

                integrative taxonomy,cryptic species,formicidae,myrmicinae,attine,attina,fungus-growing ants

                Comments

                Comment on this article