140
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Length-dependent prediction of protein intrinsic disorder

      product-review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Due to the functional importance of intrinsically disordered proteins or protein regions, prediction of intrinsic protein disorder from amino acid sequence has become an area of active research as witnessed in the 6th experiment on Critical Assessment of Techniques for Protein Structure Prediction (CASP6). Since the initial work by Romero et al. (Identifying disordered regions in proteins from amino acid sequences, IEEE Int. Conf. Neural Netw., 1997), our group has developed several predictors optimized for long disordered regions (>30 residues) with prediction accuracy exceeding 85%. However, these predictors are less successful on short disordered regions (≤30 residues). A probable cause is a length-dependent amino acid compositions and sequence properties of disordered regions.

          Results

          We proposed two new predictor models, VSL2-M1 and VSL2-M2, to address this length-dependency problem in prediction of intrinsic protein disorder. These two predictors are similar to the original VSL1 predictor used in the CASP6 experiment. In both models, two specialized predictors were first built and optimized for short (≤30 residues) and long disordered regions (>30 residues), respectively. A meta predictor was then trained to integrate the specialized predictors into the final predictor model. As the 10-fold cross-validation results showed, the VSL2 predictors achieved well-balanced prediction accuracies of 81% on both short and long disordered regions. Comparisons over the VSL2 training dataset via 10-fold cross-validation and a blind-test set of unrelated recent PDB chains indicated that VSL2 predictors were significantly more accurate than several existing predictors of intrinsic protein disorder.

          Conclusion

          The VSL2 predictors are applicable to disordered regions of any length and can accurately identify the short disordered regions that are often misclassified by our previous disorder predictors. The success of the VSL2 predictors further confirmed the previously observed differences in amino acid compositions and sequence properties between short and long disordered regions, and justified our approaches for modelling short and long disordered regions separately. The VSL2 predictors are freely accessible for non-commercial use at http://www.ist.temple.edu/disprot/predictorVSL2.php

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Book: not found

          An Introduction to the Bootstrap

          Statistics is a subject of many uses and surprisingly few effective practitioners. The traditional road to statistical knowledge is blocked, for most, by a formidable wall of mathematics. The approach in An Introduction to the Bootstrap avoids that wall. It arms scientists and engineers, as well as statisticians, with the computational techniques they need to analyze and understand complicated data sets.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Basic Local Alignment Search Tool

            S Altschul (1990)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparison of the predicted and observed secondary structure of T4 phage lysozyme.

              Predictions of the secondary structure of T4 phage lysozyme, made by a number of investigators on the basis of the amino acid sequence, are compared with the structure of the protein determined experimentally by X-ray crystallography. Within the amino terminal half of the molecule the locations of helices predicted by a number of methods agree moderately well with the observed structure, however within the carboxyl half of the molecule the overall agreement is poor. For eleven different helix predictions, the coefficients giving the correlation between prediction and observation range from 0.14 to 0.42. The accuracy of the predictions for both beta-sheet regions and for turns are generally lower than for the helices, and in a number of instances the agreement between prediction and observation is no better than would be expected for a random selection of residues. The structural predictions for T4 phage lysozyme are much less successful than was the case for adenylate kinase (Schulz et al. (1974) Nature 250, 140-142). No one method of prediction is clearly superior to all others, and although empirical predictions based on larger numbers of known protein structure tend to be more accurate than those based on a limited sample, the improvement in accuracy is not dramatic, suggesting that the accuracy of current empirical predictive methods will not be substantially increased simply by the inclusion of more data from additional protein structure determinations.
                Bookmark

                Author and article information

                Journal
                BMC Bioinformatics
                BMC Bioinformatics
                BioMed Central (London )
                1471-2105
                2006
                17 April 2006
                : 7
                : 208
                Affiliations
                [1 ]Center for Information Science and Technology, Temple University, Philadelphia, PA 19122, USA
                [2 ]School of Informatics, Indiana University, Bloomington, IN 47408, USA
                [3 ]Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
                Article
                1471-2105-7-208
                10.1186/1471-2105-7-208
                1479845
                16618368
                5b01c5ff-5948-4a97-b1c7-49bb5ba6c2d5
                Copyright © 2006 Peng et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 August 2005
                : 17 April 2006
                Categories
                Software

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article