9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Over 10 kg m−2 h−1 Evaporation Rate Enabled by a 3D Interconnected Porous Carbon Foam

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Four billion people facing severe water scarcity

          Global water scarcity assessment at a high spatial and temporal resolution, accounting for environmental flow requirements.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production

              This comprehensive review provides a guide to design photothermal materials and systems for solar-driven water evaporation addressing the water–energy nexus. Photothermal materials with broad solar absorption and high conversion efficiency have recently attracted significant interest. They are becoming a fast-growing research focus in the area of solar-driven vaporization for clean water production. The parallel development of thermal management strategies through both material and system designs has further improved the overall efficiency of solar vaporization. Collectively, this green solar-driven water vaporization technology has regained attention as a sustainable solution for water scarcity. In this review, we will report the recent progress in solar absorber material design based on various photothermal conversion mechanisms, evaluate the prerequisites in terms of optical, thermal and wetting properties for efficient solar-driven water vaporization, classify the systems based on different photothermal evaporation configurations and discuss other correlated applications in the areas of desalination, water purification and energy generation. This article aims to provide a comprehensive review on the current development in efficient photothermal evaporation, and suggest directions to further enhance its overall efficiency through the judicious choice of materials and system designs, while synchronously capitalizing waste energy to realize concurrent clean water and energy production.
                Bookmark

                Author and article information

                Journal
                Joule
                Joule
                Elsevier BV
                25424351
                April 2020
                April 2020
                : 4
                : 4
                : 928-937
                Article
                10.1016/j.joule.2020.02.014
                5ba53a38-c123-464d-b448-c2e62d32d0ee
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article