22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bilateral diffuse choroidal hemangioma in Sturge Weber syndrome: A case report highlighting the role of multimodal imaging and a brief review of the literature

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To present a patient with bilateral choroidal hemangioma in Sturge-Weber syndrome (SWS) and highlight multimodal imaging techniques for early detection and management of ocular alterations.

          Methods

          A 37-year-old woman with diagnosis of SWS presented to our unit. The patient had been treated with pulsed dye laser for bilateral nevus flammeus and had right leptomeningeal angiomatosis. She had glaucoma, but ultrasound biomicroscopy did not show anterior chamber or ciliary body alterations.

          Results

          Enhanced depth imaging (EDI) spectral domain optical coherence tomography (SD-OCT) showed bilateral diffuse choroidal hemangiomas in both eyes with choroidal thickness above 1000 μm. B-scan ultrasound examination showed diffuse choroidal hemangioma in both eyes, with a choroidal thickness of 1.53 mm and 1.94 mm in the right and left eye (RE, LE), respectively. Peripapillary retinal nerve fiber evaluation showed thinning of the retinal nerve fiber layer in both eyes.

          Conclusions

          This report highlights multimodal imaging techniques for the critical assessment of patients with SWS, especially in rare cases with bilateral choroidal hemangioma of the choroid. Novel imaging modalities enable optimal management and follow-up of rare conditions, and our case adds further evidence to the existing literature.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ.

          The Sturge-Weber syndrome is a sporadic congenital neurocutaneous disorder characterized by a port-wine stain affecting the skin in the distribution of the ophthalmic branch of the trigeminal nerve, abnormal capillary venous vessels in the leptomeninges of the brain and choroid, glaucoma, seizures, stroke, and intellectual disability. It has been hypothesized that somatic mosaic mutations disrupting vascular development cause both the Sturge-Weber syndrome and port-wine stains, and the severity and extent of presentation are determined by the developmental time point at which the mutations occurred. To date, no such mutation has been identified. We performed whole-genome sequencing of DNA from paired samples of visibly affected and normal tissue from 3 persons with the Sturge-Weber syndrome. We tested for the presence of a somatic mosaic mutation in 97 samples from 50 persons with the Sturge-Weber syndrome, a port-wine stain, or neither (controls), using amplicon sequencing and SNaPshot assays, and investigated the effects of the mutation on downstream signaling, using phosphorylation-specific antibodies for relevant effectors and a luciferase reporter assay. We identified a nonsynonymous single-nucleotide variant (c.548G→A, p.Arg183Gln) in GNAQ in samples of affected tissue from 88% of the participants (23 of 26) with the Sturge-Weber syndrome and from 92% of the participants (12 of 13) with apparently nonsyndromic port-wine stains, but not in any of the samples of affected tissue from 4 participants with an unrelated cerebrovascular malformation or in any of the samples from the 6 controls. The prevalence of the mutant allele in affected tissues ranged from 1.0 to 18.1%. Extracellular signal-regulated kinase activity was modestly increased during transgenic expression of mutant Gαq. The Sturge-Weber syndrome and port-wine stains are caused by a somatic activating mutation in GNAQ. This finding confirms a long-standing hypothesis. (Funded by the National Institutes of Health and Hunter's Dream for a Cure Foundation.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ganglion cell loss in relation to visual disability in multiple sclerosis.

            We used high-resolution spectral-domain optical coherence tomography (SD-OCT) with retinal segmentation to determine how ganglion cell loss relates to history of acute optic neuritis (ON), retinal nerve fiber layer (RNFL) thinning, visual function, and vision-related quality of life (QOL) in multiple sclerosis (MS). Cross-sectional study. A convenience sample of patients with MS (n = 122; 239 eyes) and disease-free controls (n = 31; 61 eyes). Among MS eyes, 87 had a history of ON before enrollment. The SD-OCT images were captured using Macular Cube (200×200 or 512×128) and ONH Cube 200×200 protocols. Retinal layer segmentation was performed using algorithms established for glaucoma studies. Thicknesses of the ganglion cell layer/inner plexiform layer (GCL+IPL), RNFL, outer plexiform/inner nuclear layers (OPL+INL), and outer nuclear/photoreceptor layers (ONL+PRL) were measured and compared in MS versus control eyes and MS ON versus non-ON eyes. The relation between changes in macular thickness and visual disability was also examined. The OCT measurements of GCL+IPL and RNFL thickness; high contrast visual acuity (VA); low-contrast letter acuity (LCLA) at 2.5% and 1.25% contrast; on the 25-item National Eye Institute Visual Function Questionnaire (NEI-VFQ-25) and 10-Item Neuro-Ophthalmic Supplement composite score. Macular RNFL and GCL+IPL were significantly decreased in MS versus control eyes (P<0.001 and P = 0.001) and in MS ON versus non-ON eyes (P<0.001 for both measures). Peripapillary RNFL, macular RNFL, GCL+IPL, and the combination of macular RNFL+GCL+IPL were significantly correlated with VA (P≤0.001), 2.5% LCLA (P<0.001), and 1.25% LCLA (P≤0.001). Among OCT measurements, reductions in GCL+IPL (P<0.001), macular RNFL (P = 0.006), and the combination (macular RNFL+GCL+IPL; P<0.001) were most strongly associated with lower (worse) NEI-VFQ-25 and 10-Item Supplement QOL scores; GCL+IPL thinning was significant even accounting for macular RNFL thickness (P = 0.03 for GCL+IPL, P = 0.39 for macular RNFL). We demonstrated that GCL+IPL thinning is most significantly correlated with both visual function and vision-specific QOL in MS, and may serve as a useful structural marker of disease. Our findings parallel those of magnetic resonance imaging studies that show gray matter disease is a marker of neurologic disability in MS. Proprietary or commercial disclosure may be found after the references. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolic dependence of photoreceptors on the choroid in the normal and detached retina.

              This article assesses the hypothesis that the high blood flow rate and low O(2) extraction associated with the choroidal circulation are metabolically necessary and explores the implications of the spatial relationship between the choroid and the photoreceptors for metabolism in the normal and detached retina. The O(2) distribution across the retinal layers was previously measured with O(2)-sensitive microelectrodes in cat. Profiles were fitted to a diffusion model to obtain parameters characterizing photoreceptor O(2) demand. This was a study of simulations based on those parameters. Photoreceptor inner segments have a high O(2) demand (QO(2)), and they are far (20 to 30 microm) from the choroid. These unusual conditions require a large O(2) flux to the inner segments, which in turn requires high choroidal oxygen tension (PO(2)), high choroidal venous saturation (ScvO(2)), low choroidal O(2) oxygen extraction per unit volume of blood, and a choroidal blood flow (ChBF) of at least 500 ml/100 g-min. Movement of the inner segments further from the choroid, which occurs in a retinal detachment, severely reduces the ability of the inner segments to obtain O(2), even for detachment heights as small as 100 microm. Depending on detachment height and assumptions about choroidal and inner retinal PO(2) during elevation of inspired O(2) (hyperoxia), hyperoxia is predicted to partially or fully restore photoreceptor QO(2) during a detachment. The choroid is not overperfused, but requires a high flow rate to satisfy the normal metabolic demand of the retina. Because the oxygenation of the photoreceptors is barely adequate under normal conditions, detachment has serious metabolic consequences. Hyperoxia is predicted to have clinical benefit during detachment.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Curr Ophthalmol
                J Curr Ophthalmol
                Journal of Current Ophthalmology
                Elsevier
                2452-2325
                07 November 2018
                June 2019
                07 November 2018
                : 31
                : 2
                : 242-249
                Affiliations
                [a ]Ophthalmology Unit, Sapienza University of Rome, Rome, Italy
                [b ]Polimed Beltramelli Medical Centre, Rome, Italy
                [c ]Ophthalmology Unit, NESMOS Department, Sapienza University of Rome, St. Andrea Hospital, Rome, Italy
                Author notes
                []Corresponding author. Ophthalmology Unit, NESMOS Department, Sapienza University of Rome, St. Andrea Hospital, Via di Grottarossa 1035-1039, Rome, 00189, Italy. solmazzadeh@ 123456gmail.com
                Article
                S2452-2325(18)30157-4
                10.1016/j.joco.2018.10.001
                6612038
                31317109
                5cc595e3-6c14-4f30-959e-a1e6748896b5
                © 2018 Iranian Society of Ophthalmology. Production and hosting by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 17 July 2018
                : 2 October 2018
                : 2 October 2018
                Categories
                Article

                sturge weber syndrome,choroidal hemangioma,spectral domain optical coherence tomography,peripapillary retinal nerve fiber layer,enhanced depth imaging

                Comments

                Comment on this article