9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Serum amyloid A primes microglia for ATP-dependent interleukin-1β release

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Acute-phase response is a systemic reaction to environmental/inflammatory insults and involves production of acute-phase proteins, including serum amyloid A (SAA). Interleukin-1β (IL-1β), a master regulator of neuroinflammation produced by activated inflammatory cells of the myeloid lineage, in particular microglia, plays a key role in the pathogenesis of acute and chronic diseases of the peripheral nervous system and CNS. IL-1β release is promoted by ATP acting at the purinergic P2X 7 receptor (P2X 7R) in cells primed with toll-like receptor (TLR) ligands.

          Methods

          Purified (> 99%) microglia cultured from neonatal rat cortex and cerebellum were first primed with the putative TLR4/TLR2 agonist SAA (recombinant human Apo-SAA) or the established TLR4 agonist lipopolysaccharide (LPS) followed by addition of ATP. Expression of genes for the NLRP3 inflammasome, IL-1β, tumor necrosis factor-α (TNF-α), and SAA1 was measured by quantitative real-time polymerase chain reaction (q-PCR). Intracellular and extracellular amounts of IL-1β were determined by ELISA.

          Results

          Apo-SAA stimulated, in a time-dependent manner, the expression of NLRP3, IL-1β, and TNF-α in cortical microglia, and produced a concentration-dependent increase in the intracellular content of IL-1β in these cells. A 2-h ‘priming’ of the microglia with Apo-SAA followed by addition of ATP for 1 h, resulting in a robust release of IL-1β into the culture medium, with a concomitant reduction in its intracellular content. The selective P2X 7R antagonist A740003 blocked ATP-dependent release of IL-1β. Microglia prepared from rat cerebellum displayed similar behaviors. As with LPS, Apo-SAA upregulated SAA1 and TLR2 mRNA, and downregulated that of TLR4. LPS was less efficacious than Apo-SAA, perhaps reflecting an action of the latter at TLR4 and TLR2. The TLR4 antagonist CLI-095 fully blocked the action of LPS, but only partially that of Apo-SAA. Although the TLR2 antagonist CU-CPT22 was inactive against Apo-SAA, it also failed to block the TLR2 agonist Pam 3CSK 4.

          Conclusions

          Microglia are central to the inflammatory process and a major source of IL-1β when activated. P2X 7R-triggered IL-1β maturation and export is thus likely to represent an important contributor to this cytokine pool. Given that SAA is detected in Alzheimer disease and multiple sclerosis brain, together with IL-1β-immunopositive microglia, these findings propose a link between P2X 7R, SAA, and IL-1β in CNS pathophysiology.

          Electronic supplementary material

          The online version of this article (10.1186/s12974-018-1205-6) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Nucleotide signalling during inflammation.

          Inflammatory conditions are associated with the extracellular release of nucleotides, particularly ATP. In the extracellular compartment, ATP predominantly functions as a signalling molecule through the activation of purinergic P2 receptors. Metabotropic P2Y receptors are G-protein-coupled, whereas ionotropic P2X receptors are ATP-gated ion channels. Here we discuss how signalling events through P2 receptors alter the outcomes of inflammatory or infectious diseases. Recent studies implicate a role for P2X/P2Y signalling in mounting appropriate inflammatory responses critical for host defence against invading pathogens or tumours. Conversely, P2X/P2Y signalling can promote chronic inflammation during ischaemia and reperfusion injury, inflammatory bowel disease or acute and chronic diseases of the lungs. Although nucleotide signalling has been used clinically in patients before, research indicates an expanding field of opportunities for specifically targeting individual P2 receptors for the treatment of inflammatory or infectious diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease

            The role of tumor necrosis factor (TNF) as an immune mediator has long been appreciated but its function in the brain is still unclear. TNF receptor 1 (TNFR1) is expressed in most cell types, and can be activated by binding of either soluble TNF (solTNF) or transmembrane TNF (tmTNF), with a preference for solTNF; whereas TNFR2 is expressed primarily by microglia and endothelial cells and is preferentially activated by tmTNF. Elevation of solTNF is a hallmark of acute and chronic neuroinflammation as well as a number of neurodegenerative conditions including ischemic stroke, Alzheimer's (AD), Parkinson's (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). The presence of this potent inflammatory factor at sites of injury implicates it as a mediator of neuronal damage and disease pathogenesis, making TNF an attractive target for therapeutic development to treat acute and chronic neurodegenerative conditions. However, new and old observations from animal models and clinical trials reviewed here suggest solTNF and tmTNF exert different functions under normal and pathological conditions in the CNS. A potential role for TNF in synaptic scaling and hippocampal neurogenesis demonstrated by recent studies suggest additional in-depth mechanistic studies are warranted to delineate the distinct functions of the two TNF ligands in different parts of the brain prior to large-scale development of anti-TNF therapies in the CNS. If inactivation of TNF-dependent inflammation in the brain is warranted by additional pre-clinical studies, selective targeting of TNFR1-mediated signaling while sparing TNFR2 activation may lessen adverse effects of anti-TNF therapies in the CNS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interleukin-1 and neuronal injury.

              Interleukin-1 is a pro-inflammatory cytokine that has numerous biological effects, including activation of many inflammatory processes (through activation of T cells, for example), induction of expression of acute-phase proteins, an important function in neuroimmune responses and direct effects on the brain itself. There is now extensive evidence to support the direct involvement of interleukin-1 in the neuronal injury that occurs in both acute and chronic neurodegenerative disorders. This article discusses the key evidence of a role for interleukin-1 in acute neurodegeneration - for example, stroke and brain trauma - and provides a rationale for targeting the interleukin-1 system as a therapeutic strategy.
                Bookmark

                Author and article information

                Contributors
                laura.facci@unipd.it
                silverflute.silverflute@gmail.com
                morena.zusso@unipd.it
                0039-049-8275084 , stephen.skaper@unipd.it
                pietro.giusti@unipd.it
                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central (London )
                1742-2094
                26 May 2018
                26 May 2018
                2018
                : 15
                : 164
                Affiliations
                ISNI 0000 0004 1757 3470, GRID grid.5608.b, Department of Pharmaceutical and Pharmacological Sciences, , University of Padua, ; Largo “E. Meneghetti” 2, 35131 Padua, Italy
                Author information
                http://orcid.org/0000-0001-5012-9660
                Article
                1205
                10.1186/s12974-018-1205-6
                5970445
                29803222
                5cde1567-caa1-4074-bbf2-d0ac3fd71953
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 20 March 2018
                : 15 May 2018
                Categories
                Research
                Custom metadata
                © The Author(s) 2018

                Neurosciences
                microglia,serum amyloid a,interleukin-1β,toll-like receptor,p2x purinoceptor 7,nlrp3 inflammasome,neuroinflammation

                Comments

                Comment on this article