Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Transcriptional regulation of 17beta-hydroxysteroid dehydrogenase type 12 by SREBP-1.

      Molecular and Cellular Endocrinology
      17-Hydroxysteroid Dehydrogenases, genetics, metabolism, 5' Flanking Region, Base Sequence, Binding Sites, Cell Line, Tumor, Culture Media, DNA Mutational Analysis, Gene Expression Regulation, Enzymologic, drug effects, Humans, Molecular Sequence Data, Protein Binding, Regulatory Sequences, Nucleic Acid, Sterol Regulatory Element Binding Protein 1, Sterols, pharmacology, Transcription, Genetic

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          17beta-hydroxysteroid dehydrogenase type 12 (17beta-HSD12) has been demonstrated to be involved in enzymatic conversion of weak estrogen, estrone to more potent one, estradiol. However, this enzyme was also reported to be involved in an elongation of very long chain fatty acid (VLCFA). Many genes involved in lipid metabolism are regulated by the transcription factor termed sterol regulatory element-binding proteins (SREBPs). Results of our present study demonstrated that the existence of putative SRE sequence which is recognized as responsive element for SREBPs in 5'-flanking region of 17beta-HSD12 gene. Results of luciferase assay demonstrated that the transcriptional activity of this SRE sequence depends on the activation of SREBP-1 in HepG2 (hepatocellular carcinoma cell line, human) and SK-BR-3 (breast carcinoma cell line, human). 17beta-HSD12 expression was also induced in the HepG2 cells treated with the absence of sterols in which SREBPs were activated. All these results obtained in this study clearly indicate that SREBP-1 represents one of the transcriptional regulators of human 17beta-HSD12.

          Related collections

          Author and article information

          Comments

          Comment on this article