14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrating morphological and molecular approaches for characterizing four species of Dactylogyrus (Monogenea: Dactylogyridae) from Moroccan cyprinids, with comments on their host specificity and phylogenetic relationships

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cyprinid fishes are known to harbour highly host-specific gill-associated parasites of Dactylogyrus. High similarity in the morphology of sclerotized structures among Dactylogyrus species, especially those parasitizing congeneric cyprinoids, makes their identification difficult. In this paper, four previously known species of Dactylogyrus are characterized and illustrated under a reliable taxonomic framework integrating morphological and molecular evidence, and their phylogenetic relationships are investigated using molecular data. The species are as follows: D. borjensis from Luciobarbus zayanensis; D. draaensis from Luciobarbus lepineyi; D. ksibii from Luciobarbus ksibi and Luciobarbus rabatensis; and D. marocanus from Carasobarbus fritschii, L. ksibi, L. zayanensis and Pterocapoeta maroccana. Our results revealed intraspecific genetic variability among specimens of D. ksibii collected from two different hosts and geographically distant basins. Phylogenetic reconstruction showed that Dactylogyrus spp. parasitizing Moroccan cyprinids are representatives of three main lineages corresponding to morphological differences and host specificity. Our records of D. marocanus on L. zayanensis and P. maroccana increase the range of available host species i.e.,eight species of four cyprinid genera representing two phylogenetic lineages (i.e., Barbinae and Torinae).

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies

          Motivation: Phylogenies are increasingly used in all fields of medical and biological research. Moreover, because of the next-generation sequencing revolution, datasets used for conducting phylogenetic analyses grow at an unprecedented pace. RAxML (Randomized Axelerated Maximum Likelihood) is a popular program for phylogenetic analyses of large datasets under maximum likelihood. Since the last RAxML paper in 2006, it has been continuously maintained and extended to accommodate the increasingly growing input datasets and to serve the needs of the user community. Results: I present some of the most notable new features and extensions of RAxML, such as a substantial extension of substitution models and supported data types, the introduction of SSE3, AVX and AVX2 vector intrinsics, techniques for reducing the memory requirements of the code and a plethora of operations for conducting post-analyses on sets of trees. In addition, an up-to-date 50-page user manual covering all new RAxML options is available. Availability and implementation: The code is available under GNU GPL at https://github.com/stamatak/standard-RAxML. Contact: alexandros.stamatakis@h-its.org Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.

            We announce the release of an advanced version of the Molecular Evolutionary Genetics Analysis (MEGA) software, which currently contains facilities for building sequence alignments, inferring phylogenetic histories, and conducting molecular evolutionary analysis. In version 6.0, MEGA now enables the inference of timetrees, as it implements the RelTime method for estimating divergence times for all branching points in a phylogeny. A new Timetree Wizard in MEGA6 facilitates this timetree inference by providing a graphical user interface (GUI) to specify the phylogeny and calibration constraints step-by-step. This version also contains enhanced algorithms to search for the optimal trees under evolutionary criteria and implements a more advanced memory management that can double the size of sequence data sets to which MEGA can be applied. Both GUI and command-line versions of MEGA6 can be downloaded from www.megasoftware.net free of charge.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice

                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                peerj
                peerj
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                24 March 2021
                2021
                : 9
                : e10867
                Affiliations
                [1 ]Department of Botany and Zoology, Faculty of Science, Masaryk University , Brno, Czech Republic
                [2 ]Laboratory of Biodiversity, Ecology and Genome, Faculty of Sciences, Mohammed V University , Rabat, Morocco
                [3 ]Institute of Evolutionary Sciences of Montpellier (ISEM), University of Montpellier, CNRS, IRD , Montpellier, France
                [4 ]Faculty of Sciences, Mohammed V University , Rabat, Morocco
                Article
                10867
                10.7717/peerj.10867
                8000462
                33828906
                5d052d2e-4e62-41dc-a660-92116d067b52
                ©2021 Řehulková et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 23 July 2020
                : 10 January 2021
                Funding
                Funded by: Czech Science Foundation
                Award ID: 15-19382S
                This study was supported by the Czech Science Foundation (project no. 15-19382S). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Biodiversity
                Ecology
                Molecular Biology
                Parasitology
                Taxonomy

                parasite,monogenea,dactylogyrus,cyprinidae,luciobarbus,morocco,phylogeny,host specificity,dna,carasobarbus,pterocapoeta

                Comments

                Comment on this article